{"title":"函数域短残差类中的素数方差","authors":"Stephan Baier, Arkaprava Bhandari","doi":"10.1142/s1793042124500763","DOIUrl":null,"url":null,"abstract":"<p>Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, <i>Int. Math. Res. Not.</i><b>2014</b>(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi></math></span><span></span> is a polynomial in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>T</mi><mo stretchy=\"false\">]</mo></math></span><span></span> such that <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mo>≠</mo><mn>0</mn></math></span><span></span>. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance of primes in short residue classes for function fields\",\"authors\":\"Stephan Baier, Arkaprava Bhandari\",\"doi\":\"10.1142/s1793042124500763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, <i>Int. Math. Res. Not.</i><b>2014</b>(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Q</mi></math></span><span></span> is a polynomial in <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo></math></span><span></span> such that <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Q</mi><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo><mo>≠</mo><mn>0</mn></math></span><span></span>. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500763\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, Int.Math.Res. Not.2014(1) (2014) 259-288]导出了函数场设置中算术级数和短区间中素数方差的渐近公式。在此,我们考虑计算算术级数和短区间交集中素数方差的混合问题。Keating 和 Rudnick 使用内卷将短区间转化为算术级数。我们沿用了他们的方法,但在算术级数中也应用了这种反卷。当模数 Q 是𝔽q[T]中的多项式时,Q(0)≠0,这样就产生了对偶算术级数。后者是我们在本文中始终保留的限制条件。最后,我们将讨论如何放宽这一条件。
Variance of primes in short residue classes for function fields
Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, Int. Math. Res. Not.2014(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus is a polynomial in such that . The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.