函数域短残差类中的素数方差

IF 0.5 3区 数学 Q3 MATHEMATICS
Stephan Baier, Arkaprava Bhandari
{"title":"函数域短残差类中的素数方差","authors":"Stephan Baier, Arkaprava Bhandari","doi":"10.1142/s1793042124500763","DOIUrl":null,"url":null,"abstract":"<p>Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, <i>Int. Math. Res. Not.</i><b>2014</b>(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi></math></span><span></span> is a polynomial in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>T</mi><mo stretchy=\"false\">]</mo></math></span><span></span> such that <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mo>≠</mo><mn>0</mn></math></span><span></span>. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance of primes in short residue classes for function fields\",\"authors\":\"Stephan Baier, Arkaprava Bhandari\",\"doi\":\"10.1142/s1793042124500763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, <i>Int. Math. Res. Not.</i><b>2014</b>(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Q</mi></math></span><span></span> is a polynomial in <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo></math></span><span></span> such that <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>Q</mi><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo><mo>≠</mo><mn>0</mn></math></span><span></span>. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500763\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, Int.Math.Res. Not.2014(1) (2014) 259-288]导出了函数场设置中算术级数和短区间中素数方差的渐近公式。在此,我们考虑计算算术级数和短区间交集中素数方差的混合问题。Keating 和 Rudnick 使用内卷将短区间转化为算术级数。我们沿用了他们的方法,但在算术级数中也应用了这种反卷。当模数 Q 是𝔽q[T]中的多项式时,Q(0)≠0,这样就产生了对偶算术级数。后者是我们在本文中始终保留的限制条件。最后,我们将讨论如何放宽这一条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variance of primes in short residue classes for function fields

Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, Int. Math. Res. Not.2014(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus Q is a polynomial in 𝔽q[T] such that Q(0)0. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信