{"title":"关于几乎是素数的 k 元组","authors":"Bin Chen","doi":"10.1142/s1793042124500751","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span> denote the divisor function and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> be an admissible set. We prove that there are infinitely many <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> for which the product <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is square-free and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mi>τ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>≤</mo><mo stretchy=\"false\">⌊</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">⌋</mo></math></span><span></span>, where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> is asymptotic to <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mfrac><mrow><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn></mrow><mrow><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. It improves a previous result of Ram Murty and Vatwani, replacing <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">/</mo><mn>4</mn></math></span><span></span> by <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></math></span><span></span>. The main ingredients in our proof are the higher rank Selberg sieve and Irving–Wu–Xi estimate for the divisor function in arithmetic progressions to smooth moduli.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On almost-prime k-tuples\",\"authors\":\"Bin Chen\",\"doi\":\"10.1142/s1793042124500751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span> denote the divisor function and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℋ</mi><mo>=</mo><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> be an admissible set. We prove that there are infinitely many <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> for which the product <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is square-free and <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mi>τ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>≤</mo><mo stretchy=\\\"false\\\">⌊</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">⌋</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> is asymptotic to <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mfrac><mrow><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn></mrow><mrow><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. It improves a previous result of Ram Murty and Vatwani, replacing <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn><mo stretchy=\\\"false\\\">/</mo><mn>4</mn></math></span><span></span> by <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></math></span><span></span>. The main ingredients in our proof are the higher rank Selberg sieve and Irving–Wu–Xi estimate for the divisor function in arithmetic progressions to smooth moduli.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500751\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500751","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let denote the divisor function and be an admissible set. We prove that there are infinitely many for which the product is square-free and , where is asymptotic to . It improves a previous result of Ram Murty and Vatwani, replacing by . The main ingredients in our proof are the higher rank Selberg sieve and Irving–Wu–Xi estimate for the divisor function in arithmetic progressions to smooth moduli.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.