{"title":"On the Diophantine equation σ2(X¯n) = σn(X¯n)","authors":"Piotr Miska, Maciej Ulas","doi":"10.1142/s1793042124500635","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the set <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of positive integer solutions of the title Diophantine equation. In particular, for a given <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> we prove boundedness of the number of solutions, give precise upper bound on the common value of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> together with the biggest value of the variable <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> appearing in the solution. Moreover, we enumerate all solutions for <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≤</mo><mn>1</mn><mn>6</mn></math></span><span></span> and discuss the set of values of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub></math></span><span></span> over elements of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500635","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the set of positive integer solutions of the title Diophantine equation. In particular, for a given we prove boundedness of the number of solutions, give precise upper bound on the common value of and together with the biggest value of the variable appearing in the solution. Moreover, we enumerate all solutions for and discuss the set of values of over elements of .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.