Reciprocity formulae for generalized Dedekind–Rademacher sums attached to three Dirichlet characters and related polynomial reciprocity formulae

IF 0.5 3区 数学 Q3 MATHEMATICS
Brad Isaacson
{"title":"Reciprocity formulae for generalized Dedekind–Rademacher sums attached to three Dirichlet characters and related polynomial reciprocity formulae","authors":"Brad Isaacson","doi":"10.1142/s1793042124500726","DOIUrl":null,"url":null,"abstract":"<p>We define a three-character analogue of the generalized Dedekind–Rademacher sum introduced by Hall, Wilson, and Zagier and prove its reciprocity formula which contains all of the reciprocity formulas in the literature for generalized Dedekind–Rademacher sums attached (and not attached) to Dirichlet characters as special cases. Additionally, we prove related polynomial reciprocity formulas which contain all of the polynomial reciprocity formulas in the literature as special cases, such as those given by Carlitz, Beck &amp; Kohl, and the present author.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500726","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define a three-character analogue of the generalized Dedekind–Rademacher sum introduced by Hall, Wilson, and Zagier and prove its reciprocity formula which contains all of the reciprocity formulas in the literature for generalized Dedekind–Rademacher sums attached (and not attached) to Dirichlet characters as special cases. Additionally, we prove related polynomial reciprocity formulas which contain all of the polynomial reciprocity formulas in the literature as special cases, such as those given by Carlitz, Beck & Kohl, and the present author.

附加于三个 Dirichlet 字符的广义 Dedekind-Rademacher 和的互易公式及相关多项式互易公式
我们定义了霍尔、威尔逊和扎吉尔引入的广义戴德金-拉德马赫和的三字符类似物,并证明了它的互易公式,其中包含了文献中所有作为特例的附于(和不附于)德里赫特字符的广义戴德金-拉德马赫和的互易公式。此外,我们还证明了相关的多项式互易公式,这些公式包含了文献中作为特例的所有多项式互易公式,如 Carlitz、Beck & Kohl 和本文作者给出的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信