{"title":"形式为 𝒪K[γ] ∩K 的环中的密度问题","authors":"Deepesh Singhal, Yuxin Lin","doi":"10.1142/s1793042124500581","DOIUrl":null,"url":null,"abstract":"<p>We fix a number field <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span> and study statistical properties of the ring <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>γ</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">∩</mo><mi>K</mi></math></span><span></span> as <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span> varies over algebraic numbers of a fixed degree <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Given <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, we explicitly compute the density of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span> for which <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>γ</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">∩</mo><mi>K</mi><mo>=</mo><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">[</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mi>k</mi><mo stretchy=\"false\">]</mo></math></span><span></span> and show that this does not depend on the number field <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>. In particular, we show that the density of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span> for which <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>γ</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">∩</mo><mi>K</mi><mo>=</mo><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span><span></span> is <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mfrac><mrow><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></mrow></mfrac></math></span><span></span>. In a recent paper [Singhal and Lin, Primes in denominators of algebraic numbers, <i>Int. J. Number Theory</i> (2023), doi:10.1142/S1793042124500167], the authors define <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo stretchy=\"false\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> to be a certain finite subset of <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>Spec</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and show that <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mo stretchy=\"false\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> determines the ring <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>γ</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">∩</mo><mi>K</mi></math></span><span></span>. We show that if <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mstyle><mtext>Spec</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"cal\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> satisfy <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">∩</mo><mi>ℤ</mi><mo>≠</mo><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">∩</mo><mi>ℤ</mi></math></span><span></span>, then the events <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>X</mi><mo stretchy=\"false\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>X</mi><mo stretchy=\"false\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are independent. As <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>→</mo><mi>∞</mi></math></span><span></span>, we study the asymptotics of the density of <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span> for which <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>X</mi><mo stretchy=\"false\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo>=</mo><mi>t</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density questions in rings of the form 𝒪K[γ] ∩ K\",\"authors\":\"Deepesh Singhal, Yuxin Lin\",\"doi\":\"10.1142/s1793042124500581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We fix a number field <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span> and study statistical properties of the ring <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>γ</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">∩</mo><mi>K</mi></math></span><span></span> as <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span> varies over algebraic numbers of a fixed degree <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Given <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, we explicitly compute the density of <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span> for which <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>γ</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">∩</mo><mi>K</mi><mo>=</mo><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mi>k</mi><mo stretchy=\\\"false\\\">]</mo></math></span><span></span> and show that this does not depend on the number field <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>. In particular, we show that the density of <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span> for which <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>γ</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">∩</mo><mi>K</mi><mo>=</mo><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span><span></span> is <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mfrac><mrow><mi>ζ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>ζ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></mrow></mfrac></math></span><span></span>. In a recent paper [Singhal and Lin, Primes in denominators of algebraic numbers, <i>Int. J. Number Theory</i> (2023), doi:10.1142/S1793042124500167], the authors define <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> to be a certain finite subset of <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext>Spec</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and show that <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> determines the ring <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>γ</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">∩</mo><mi>K</mi></math></span><span></span>. We show that if <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mstyle><mtext>Spec</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi mathvariant=\\\"cal\\\">𝒪</mi></mrow><mrow><mi>K</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> satisfy <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">∩</mo><mi>ℤ</mi><mo>≠</mo><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">∩</mo><mi>ℤ</mi></math></span><span></span>, then the events <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>X</mi><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔭</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>X</mi><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> are independent. As <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>→</mo><mi>∞</mi></math></span><span></span>, we study the asymptotics of the density of <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span> for which <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>X</mi><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo>,</mo><mi>γ</mi><mo stretchy=\\\"false\\\">)</mo><mo>|</mo><mo>=</mo><mi>t</mi></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500581\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们固定一个数域 K,研究当 γ 在固定度 n≥2 的代数数上变化时,环 𝒪K[γ]∩K 的统计性质。给定 k≥1,我们明确计算了 γ 的密度,其中 𝒪K[γ]∩K=𝒪K[1/k],并证明它不依赖于数域 K。特别是,我们证明了 γ 的密度,其中 𝒪K[γ]∩K=𝒪K 是 ζ(n+1)ζ(n)。在最近的一篇论文 [Singhal and Lin, Primes in denominators of algebraic numbers, Int.J. Number Theory (2023), doi:10.1142/S1793042124500167] 中,作者定义 X(K,γ) 为 Spec(𝒪K) 的某个有限子集,并证明 X(K,γ) 决定了环𝒪K[γ]∩K。我们证明,如果𝔭1,𝔭2∈Spec(𝒪K)满足𝔭1∩≠𝔭2∩ℤ,那么事件𝔭1∈X(K,γ)和𝔭2∈X(K,γ)是独立的。当 t→∞ 时,我们研究|X(K,γ)|=t 时 γ 密度的渐近线。
We fix a number field and study statistical properties of the ring as varies over algebraic numbers of a fixed degree . Given , we explicitly compute the density of for which and show that this does not depend on the number field . In particular, we show that the density of for which is . In a recent paper [Singhal and Lin, Primes in denominators of algebraic numbers, Int. J. Number Theory (2023), doi:10.1142/S1793042124500167], the authors define to be a certain finite subset of and show that determines the ring . We show that if satisfy , then the events and are independent. As , we study the asymptotics of the density of for which .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.