关于 Diophantine 方程 σ2(X¯n) = σn(X¯n)

IF 0.5 3区 数学 Q3 MATHEMATICS
Piotr Miska, Maciej Ulas
{"title":"关于 Diophantine 方程 σ2(X¯n) = σn(X¯n)","authors":"Piotr Miska, Maciej Ulas","doi":"10.1142/s1793042124500635","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the set <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of positive integer solutions of the title Diophantine equation. In particular, for a given <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> we prove boundedness of the number of solutions, give precise upper bound on the common value of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> together with the biggest value of the variable <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> appearing in the solution. Moreover, we enumerate all solutions for <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≤</mo><mn>1</mn><mn>6</mn></math></span><span></span> and discuss the set of values of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub></math></span><span></span> over elements of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diophantine equation σ2(X¯n) = σn(X¯n)\",\"authors\":\"Piotr Miska, Maciej Ulas\",\"doi\":\"10.1142/s1793042124500635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the set <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of positive integer solutions of the title Diophantine equation. In particular, for a given <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> we prove boundedness of the number of solutions, give precise upper bound on the common value of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mover accent=\\\"false\\\"><mrow><mi>X</mi></mrow><mo accent=\\\"true\\\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mover accent=\\\"false\\\"><mrow><mi>X</mi></mrow><mo accent=\\\"true\\\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> together with the biggest value of the variable <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> appearing in the solution. Moreover, we enumerate all solutions for <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≤</mo><mn>1</mn><mn>6</mn></math></span><span></span> and discuss the set of values of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">/</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msub></math></span><span></span> over elements of <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500635\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500635","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了标题 Diophantine 方程的正整数解集 S(n)。特别是,对于给定的 n,我们证明了解的有界性,给出了 σ2(X¯n)和 σn(X¯n)的公共值以及解中出现的变量 xn 的最大值的精确上限。此外,我们列举了 n≤16 的所有解,并讨论了 S(n) 元素上 xn/xn-1 的值集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Diophantine equation σ2(X¯n) = σn(X¯n)

In this paper, we investigate the set S(n) of positive integer solutions of the title Diophantine equation. In particular, for a given n we prove boundedness of the number of solutions, give precise upper bound on the common value of σ2(X¯n) and σn(X¯n) together with the biggest value of the variable xn appearing in the solution. Moreover, we enumerate all solutions for n16 and discuss the set of values of xn/xn1 over elements of S(n).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信