{"title":"q 次二项式系数的多分区类似物","authors":"Byungchan Kim, Hayan Nam, Myungjun Yu","doi":"10.1142/s1793042124500659","DOIUrl":null,"url":null,"abstract":"<p>We introduce the multi-Gaussian polynomial <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, a multi-partition analogue of the Gaussian polynomial (also known as <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-binomial coefficient), as the generating function for certain restricted multi-color partitions. We study basic properties of multi-Gaussian polynomials and non-symmetric properties of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. We also derive a Sylvester-type identity and its application.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-partition analogue of q-binomial coefficients\",\"authors\":\"Byungchan Kim, Hayan Nam, Myungjun Yu\",\"doi\":\"10.1142/s1793042124500659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the multi-Gaussian polynomial <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, a multi-partition analogue of the Gaussian polynomial (also known as <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span>-binomial coefficient), as the generating function for certain restricted multi-color partitions. We study basic properties of multi-Gaussian polynomials and non-symmetric properties of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. We also derive a Sylvester-type identity and its application.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500659\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500659","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multi-partition analogue of q-binomial coefficients
We introduce the multi-Gaussian polynomial , a multi-partition analogue of the Gaussian polynomial (also known as -binomial coefficient), as the generating function for certain restricted multi-color partitions. We study basic properties of multi-Gaussian polynomials and non-symmetric properties of . We also derive a Sylvester-type identity and its application.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.