{"title":"西格尔模块群的乘法系统","authors":"Eberhard Freitag, Adrian Hauffe-Waschbüsch","doi":"10.1142/s1793042124500684","DOIUrl":null,"url":null,"abstract":"<p>Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, <i>C. R. Acad. Sci. Paris</i><b>287</b> (1978) 203–208] (see also 7.1 in [R. Hill, Fractional weights and non-congruence subgroups, in <i>Automorphic Forms and Representations of Algebraic Groups Over Local Fields</i>, eds. H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp. 71–80]) that the weights of Siegel modular forms on any congruence subgroup of the Siegel modular group of genus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>></mo><mn>1</mn></math></span><span></span> must be integral or half integral. Actually he proved that for a system <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of complex numbers of absolute value 1</p><p><span><math altimg=\"eq-00003.gif\" display=\"block\" overflow=\"scroll\"><mtable columnalign=\"left\"><mtr><mtd columnalign=\"right\"><mspace width=\"8.5pc\"></mspace><mi>v</mi><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo><mo>det</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>C</mi><mi>Z</mi><mo stretchy=\"false\">+</mo><mi>D</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>r</mi><mo>∈</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mspace width=\"8.5pc\"></mspace><mo stretchy=\"false\">(</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mtd><mtd></mtd></mtr></mtable></math></span><span></span></p><p>can be an automorphy factor only if <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>r</mi></math></span><span></span> is integral. We give a different proof for this. It uses Mennicke’s result [Zur Theorie der Siegelschen Modulgruppe, <i>Math. Ann.</i><b>159</b> (1965) 115–129] that subgroups of finite index of the Siegel modular group are congruence subgroups and some techniques from [Solution of the congruence subgroup problem for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace width=\".275em\"></mspace><mo stretchy=\"false\">(</mo><mi>n</mi><mo>≥</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mspace width=\".275em\"></mspace><mo stretchy=\"false\">(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, <i>Publ. Math. Inst. Hautes Études Sci.</i><b>33</b> (1967) 59–137] of Bass–Milnor–Serre.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplier systems for Siegel modular groups\",\"authors\":\"Eberhard Freitag, Adrian Hauffe-Waschbüsch\",\"doi\":\"10.1142/s1793042124500684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, <i>C. R. Acad. Sci. Paris</i><b>287</b> (1978) 203–208] (see also 7.1 in [R. Hill, Fractional weights and non-congruence subgroups, in <i>Automorphic Forms and Representations of Algebraic Groups Over Local Fields</i>, eds. H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp. 71–80]) that the weights of Siegel modular forms on any congruence subgroup of the Siegel modular group of genus <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>></mo><mn>1</mn></math></span><span></span> must be integral or half integral. Actually he proved that for a system <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>v</mi><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of complex numbers of absolute value 1</p><p><span><math altimg=\\\"eq-00003.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mtable columnalign=\\\"left\\\"><mtr><mtd columnalign=\\\"right\\\"><mspace width=\\\"8.5pc\\\"></mspace><mi>v</mi><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo stretchy=\\\"false\\\">)</mo><mo>det</mo><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>C</mi><mi>Z</mi><mo stretchy=\\\"false\\\">+</mo><mi>D</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>r</mi><mo>∈</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo><mspace width=\\\"8.5pc\\\"></mspace><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mtd><mtd></mtd></mtr></mtable></math></span><span></span></p><p>can be an automorphy factor only if <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>r</mi></math></span><span></span> is integral. We give a different proof for this. It uses Mennicke’s result [Zur Theorie der Siegelschen Modulgruppe, <i>Math. Ann.</i><b>159</b> (1965) 115–129] that subgroups of finite index of the Siegel modular group are congruence subgroups and some techniques from [Solution of the congruence subgroup problem for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace width=\\\".275em\\\"></mspace><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>≥</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mspace width=\\\".275em\\\"></mspace><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <i>Publ. Math. Inst. Hautes Études Sci.</i><b>33</b> (1967) 59–137] of Bass–Milnor–Serre.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500684\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500684","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, C. R. Acad.Sci. Paris287 (1978) 203-208] 中证明的。(另见 7.1 [R.Hill, Fractional weights and non-congruence subgroups, in Automorphic Forms and Representations of Algebraic Groups Over Local Fields, eds.H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp.实际上,他证明了对于绝对值复数系统 v(M) 1v(M)det(CZ+D)r(r∈ℝ)(0.1) 只有当 2r 是积分时才能成为自形因子。我们给出了一个不同的证明。它使用了门尼克的结果[Zur Theorie der Siegelschen Modulgruppe, Math. Ann.159 (1965) 115-129],即西格尔模群的有限指数子群是全等子群,以及[Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2), Publ.Math.高等科学研究所,33 (1967) 59-137]的 Bass-Milnor-Serre.
Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, C. R. Acad. Sci. Paris287 (1978) 203–208] (see also 7.1 in [R. Hill, Fractional weights and non-congruence subgroups, in Automorphic Forms and Representations of Algebraic Groups Over Local Fields, eds. H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp. 71–80]) that the weights of Siegel modular forms on any congruence subgroup of the Siegel modular group of genus must be integral or half integral. Actually he proved that for a system of complex numbers of absolute value 1
can be an automorphy factor only if is integral. We give a different proof for this. It uses Mennicke’s result [Zur Theorie der Siegelschen Modulgruppe, Math. Ann.159 (1965) 115–129] that subgroups of finite index of the Siegel modular group are congruence subgroups and some techniques from [Solution of the congruence subgroup problem for and , Publ. Math. Inst. Hautes Études Sci.33 (1967) 59–137] of Bass–Milnor–Serre.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.