x3 + x2y2 + y3 = k 上的有理点

IF 0.5 3区 数学 Q3 MATHEMATICS
Xiaoan Lang, Jeremy Rouse
{"title":"x3 + x2y2 + y3 = k 上的有理点","authors":"Xiaoan Lang, Jeremy Rouse","doi":"10.1142/s1793042124500878","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of determining, given an integer <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>, the rational solutions to <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mo>=</mo><mi>k</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>. For <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≠</mo><mn>0</mn></math></span><span></span>, the curve <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> has genus <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span> and its Jacobian is isogenous to the product of three elliptic curves <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>. We explicitly determine the rational points on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>∈</mo><mi>ℚ</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational points on x3 + x2y2 + y3 = k\",\"authors\":\"Xiaoan Lang, Jeremy Rouse\",\"doi\":\"10.1142/s1793042124500878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of determining, given an integer <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>, the rational solutions to <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mspace width=\\\".17em\\\"></mspace><mo stretchy=\\\"false\\\">+</mo><mspace width=\\\".17em\\\"></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace width=\\\".17em\\\"></mspace><mo stretchy=\\\"false\\\">+</mo><mspace width=\\\".17em\\\"></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mo>=</mo><mi>k</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>. For <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi><mo>≠</mo><mn>0</mn></math></span><span></span>, the curve <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> has genus <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn></math></span><span></span> and its Jacobian is isogenous to the product of three elliptic curves <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>. We explicitly determine the rational points on <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi><mo>∈</mo><mi>ℚ</mi></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500878\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500878","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的问题是,在给定整数 k 的情况下,确定 Ck:x3z+x2y2+y3z=kz4 的有理解。对于 k≠0,曲线 Ck 的属数为 3,其 Jacobian 与三条椭圆曲线 E1,k、E2,k、E3,k 的乘积同源。在假设其中一条椭圆曲线的秩为零的情况下,我们明确地确定了 Ck 上的有理点。我们讨论了将我们的结果扩展到处理所有 k∈ℚ 所涉及的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational points on x3 + x2y2 + y3 = k

We study the problem of determining, given an integer k, the rational solutions to Ck:x3z+x2y2+y3z=kz4. For k0, the curve Ck has genus 3 and its Jacobian is isogenous to the product of three elliptic curves E1,k, E2,k, E3,k. We explicitly determine the rational points on Ck under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all k.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信