一般水平多个 t 值的关系

IF 0.5 3区 数学 Q3 MATHEMATICS
Zhonghua Li, Zhenlu Wang
{"title":"一般水平多个 t 值的关系","authors":"Zhonghua Li, Zhenlu Wang","doi":"10.1142/s1793042124500696","DOIUrl":null,"url":null,"abstract":"<p>We study the relations of multiple <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-values of general level. The generating function of sums of multiple <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight, depth and height is represented by the generalized hypergeometric function <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, which generalizes the results for multiple zeta(-star) values and multiple <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with height one and maximal height and a weighted sum formula for sums of multiple <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>. Some evaluations of multiple <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-star values of level <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span> with one–two–three indices are given.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relations of multiple t-values of general level\",\"authors\":\"Zhonghua Li, Zhenlu Wang\",\"doi\":\"10.1142/s1793042124500696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the relations of multiple <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-values of general level. The generating function of sums of multiple <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi></math></span><span></span> with fixed weight, depth and height is represented by the generalized hypergeometric function <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, which generalizes the results for multiple zeta(-star) values and multiple <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi></math></span><span></span> with height one and maximal height and a weighted sum formula for sums of multiple <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi></math></span><span></span> with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi></math></span><span></span>. Some evaluations of multiple <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span>-star values of level <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span> with one–two–three indices are given.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500696\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500696","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究一般水平的多重 t 值的关系。具有固定权重、深度和高度的 N 级多个 t-(星)值之和的生成函数用广义超几何函数 3F2 表示,它推广了多个 zeta(-星)值和多个 t-(星)值的结果。作为应用,我们得到了高度为一和最大高度为 N 的多个 t-(星)级值之和的生成函数公式,以及权重和深度固定的 N 级多个 t-(星)级值之和的加权和公式。利用塞特尔代数,我们还得到了 N 层多个 t-(星)值的对称和公式和霍夫曼限制和公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relations of multiple t-values of general level

We study the relations of multiple t-values of general level. The generating function of sums of multiple t-(star) values of level N with fixed weight, depth and height is represented by the generalized hypergeometric function 3F2, which generalizes the results for multiple zeta(-star) values and multiple t-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple t-(star) values of level N with height one and maximal height and a weighted sum formula for sums of multiple t-(star) values of level N with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple t-(star) values of level N. Some evaluations of multiple t-star values of level 2 with one–two–three indices are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信