{"title":"可表示为两个正方形之和的整数有限序列","authors":"Ajai Choudhry, Bibekananda Maji","doi":"10.1142/s1793042124500866","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with finite sequences of integers that may be written as sums of squares of two nonzero integers. We first find infinitely many integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> such that <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mi>h</mi></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">+</mo><mi>k</mi></math></span><span></span> are all sums of two squares where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi></math></span><span></span> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> are two arbitrary integers, and as an immediate corollary obtain, in parametric terms, three consecutive integers that are sums of two squares. Similarly we obtain <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> in parametric terms such that all the four integers <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>4</mn></math></span><span></span> are sums of two squares. We also find infinitely many integers <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> such that all the five integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>4</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>5</mn></math></span><span></span> are sums of two squares, and finally, we find infinitely many arithmetic progressions, with common difference <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn></math></span><span></span>, of five integers all of which are sums of two squares.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite sequences of integers expressible as sums of two squares\",\"authors\":\"Ajai Choudhry, Bibekananda Maji\",\"doi\":\"10.1142/s1793042124500866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with finite sequences of integers that may be written as sums of squares of two nonzero integers. We first find infinitely many integers <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> such that <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mi>h</mi></math></span><span></span> and <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mi>k</mi></math></span><span></span> are all sums of two squares where <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi></math></span><span></span> and <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span> are two arbitrary integers, and as an immediate corollary obtain, in parametric terms, three consecutive integers that are sums of two squares. Similarly we obtain <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> in parametric terms such that all the four integers <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>4</mn></math></span><span></span> are sums of two squares. We also find infinitely many integers <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> such that all the five integers <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>4</mn><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>5</mn></math></span><span></span> are sums of two squares, and finally, we find infinitely many arithmetic progressions, with common difference <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>4</mn></math></span><span></span>, of five integers all of which are sums of two squares.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500866\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文关注的是可以写成两个非零整数的平方和的有限整数序列。我们首先找到了无限多个整数 n,使得 n、n+h 和 n+k 都是两个平方的和,其中 h 和 k 是两个任意整数,并立即推论出,在参数项中,有三个连续的整数是两个平方的和。同样,我们还可以从参数项中得到 n,从而得到 n,n+1,n+2,n+4,这四个整数都是两个平方的和。我们还可以找到无数个整数 n,使得所有五个整数 n,n+1,n+2,n+4,n+5 都是两个平方之和,最后,我们还可以找到无数个算术级数,它们的共同差为 4,五个整数都是两个平方之和。
Finite sequences of integers expressible as sums of two squares
This paper is concerned with finite sequences of integers that may be written as sums of squares of two nonzero integers. We first find infinitely many integers such that and are all sums of two squares where and are two arbitrary integers, and as an immediate corollary obtain, in parametric terms, three consecutive integers that are sums of two squares. Similarly we obtain in parametric terms such that all the four integers are sums of two squares. We also find infinitely many integers such that all the five integers are sums of two squares, and finally, we find infinitely many arithmetic progressions, with common difference , of five integers all of which are sums of two squares.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.