几类数字半群商数的属数

IF 0.5 3区 数学 Q3 MATHEMATICS
Kyeongjun Lee, Hayan Nam
{"title":"几类数字半群商数的属数","authors":"Kyeongjun Lee, Hayan Nam","doi":"10.1142/s1793042124500891","DOIUrl":null,"url":null,"abstract":"<p>Finding the Frobenius number and the genus of any numerical semigroup <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi></math></span><span></span> is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genus of a quotient of several types of numerical semigroups\",\"authors\":\"Kyeongjun Lee, Hayan Nam\",\"doi\":\"10.1142/s1793042124500891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finding the Frobenius number and the genus of any numerical semigroup <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi></math></span><span></span> is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500891\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500891","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

求任何数值半群 S 的弗罗贝尼斯数和属是一个众所周知的公开问题。同样,如何表达数值半群的商的弗罗贝尼斯数和属也是一个研究课题。本文通过枚举各类数字半群的希尔伯特数列,展示了由以下数列之一生成的数字半群商的属数表达式:算术级数、几何级数和毕达哥拉斯三重数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The genus of a quotient of several types of numerical semigroups

Finding the Frobenius number and the genus of any numerical semigroup S is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信