Irreducibility and galois groups of truncated binomial polynomials

IF 0.5 3区 数学 Q3 MATHEMATICS
Shanta Laishram, Prabhakar Yadav
{"title":"Irreducibility and galois groups of truncated binomial polynomials","authors":"Shanta Laishram, Prabhakar Yadav","doi":"10.1142/s1793042124500817","DOIUrl":null,"url":null,"abstract":"<p>For positive integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mi>m</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></mfrac></mfenced><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mfenced><mi>x</mi><mo stretchy=\"false\">+</mo><mo>…</mo><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span><span></span> be the truncated binomial expansion of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> consisting of all terms of degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mi>m</mi><mo>.</mo></math></span><span></span> It is conjectured that for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>&gt;</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>, the polynomial <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible. We confirm this conjecture when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo>&lt;</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mo>.</mo></math></span><span></span> Also we show for any <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo>&lt;</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msup></math></span><span></span>, the polynomial <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible when <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>≥</mo><mo>max</mo><mo stretchy=\"false\">{</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>,</mo><mn>2</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">}</mo><mo>.</mo></math></span><span></span> Under the explicit abc-conjecture, for a fixed <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>, we give an explicit <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> depending only on <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> such that <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mo>∀</mo><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, the polynomial <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible. Further <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mo>∀</mo><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>, the Galois group associated to <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the symmetric group <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For positive integers nm, let Pn,m(x):=j=0mnjxj=n0+n1x++nmxm be the truncated binomial expansion of (1+x)n consisting of all terms of degree m. It is conjectured that for n>m+1, the polynomial Pn,m(x) is irreducible. We confirm this conjecture when 2mn<(m+1)10. Also we show for any r10 and 2mn<(m+1)r+1, the polynomial Pn,m(x) is irreducible when mmax{106,2r3}. Under the explicit abc-conjecture, for a fixed m, we give an explicit n0,n1 depending only on m such that nn0, the polynomial Pn,m(x) is irreducible. Further nn1, the Galois group associated to Pn,m(x) is the symmetric group Sm.

截断二项式多项式的不可约性和伽洛瓦群
对于正整数 n≥m,设 Pn,m(x):=∑j=0mnjxj=n0+n1x+...+nmxm 是 (1+x)n 的截二项展开式,由≤m 的所有项组成。有人猜想,对于 n>m+1,多项式 Pn,m(x) 是不可约的。当 2m≤n<(m+1)10 时,我们证实了这一猜想。我们还证明,对于任意 r≥10 和 2m≤n<(m+1)r+1,当 m≥max{106,2r3} 时,多项式 Pn,m(x) 是不可约的。根据显式 abc 猜想,对于固定的 m,我们给出一个仅取决于 m 的显式 n0,n1,使得 ∀n≥n0 时,多项式 Pn,m(x) 不可约。进一步∀n≥n1,与 Pn,m(x) 相关的伽罗瓦群是对称群 Sm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信