Near-squares in binary recurrence sequences

IF 0.5 3区 数学 Q3 MATHEMATICS
Nikos Tzanakis, Paul Voutier
{"title":"Near-squares in binary recurrence sequences","authors":"Nikos Tzanakis, Paul Voutier","doi":"10.1142/s1793042124500787","DOIUrl":null,"url":null,"abstract":"<p>We call an integer a <i>near-square</i> if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span> by <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>a</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span></span>. We show that for a given <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, there is at most one <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>5</mn></math></span><span></span> such that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a near-square. With the exceptions of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>6</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>7</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mn>3</mn><mn>9</mn><mo stretchy=\"false\">⋅</mo><mn>1</mn><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, any such <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> can be a near-square only if <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≡</mo><mn>2</mn><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mn>4</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≡</mo><mn>3</mn><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mn>4</mn><mo stretchy=\"false\">)</mo></math></span><span></span> is prime and <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>1</mn><mn>9</mn></math></span><span></span>.</p><p>This is a part of a more general phenomenon regarding near-squares in nondegenerate recurrence sequences defined for the integers <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi></math></span><span></span> and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><mo stretchy=\"false\">−</mo><msubsup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span><span></span> by <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>a</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><mi>b</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span></span>. This arises from a novel Aurifeuillean-type factorization of <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math></span><span></span> we have found.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"57 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500787","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We call an integer a near-square if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers a3 by u0(a)=0, u1(a)=1 and un+2(a)=aun+1(a)un(a) for n0. We show that for a given a3, there is at most one n5 such that un(a) is a near-square. With the exceptions of u6(3)=122 and u7(6)=239132, any such un(a) can be a near-square only if a2(mod4), n3(mod4) is prime and n19.

This is a part of a more general phenomenon regarding near-squares in nondegenerate recurrence sequences defined for the integers a and b=b12 by u0(a,b)=0, u1(a,b)=1 and un+2(a,b)=aun+1(a,b)+bun(a,b) for n0. This arises from a novel Aurifeuillean-type factorization of u2n+1(a,b) we have found.

二元递推序列中的近似值
如果一个整数的绝对值是一个平方或一个质数乘以一个平方,我们就称它为近平方。我们研究了整数 a≥3 的二元递推序列中的近似平方,即 n≥0 时,u0(a)=0,u1(a)=1 和 un+2(a)=aun+1(a)-un(a)。除了 u6(3)=122 和 u7(6)=239⋅132 以外,只有当 a≡2(mod4),n≡3(mod4) 是质数且 n≥19 时,任何这样的 un(a) 才可能是近平方项。这是关于非enerate递推序列中的近方差的更普遍现象的一部分,它是由 u0(a,b)=0,u1(a,b)=1 和 un+2(a,b)=aun+1(a,b)+bun(a,b) 定义的,对于 n≥0 的整数 a 和 b=-b12 的递推序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信