{"title":"A 1.48-fs FoM Analog Capacitorless-LDO With Cascade-Inverter-Based Pseudo-Power Transistor","authors":"Hing Tai Chen;Xun Liu;Ka Nang Leung","doi":"10.1109/LSSC.2024.3522785","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3522785","url":null,"abstract":"A capacitorless analog low-dropout regulator (CL-LDO) with cascade-inverter-based pseudo-power transistor is presented in this letter. The proposed architecture supports ultralow-voltage operation, fast transient response, high current efficiency, and high loop gain with low quiescent current along the full load range. The proposed CL-LDO can be easily implemented without any external transient-enhancement circuit. The circuit is fabricated in a 65-nm LP CMOS process with an active area of 0.00782 mm2. The minimum supply voltage can be as low as 0.5 V. The minimum dropout voltage is 20 mV. Under a 1-V supply, the undershoot voltage with 100-mV dropout voltage is 87 mV and settles down within 10 ns when the load current increases from \u0000<inline-formula> <tex-math>$100~boldsymbol {mu }$ </tex-math></inline-formula>\u0000 A to 50 mA within 5-ns edge time. The measured quiescent current is \u0000<inline-formula> <tex-math>$4~boldsymbol {mu }$ </tex-math></inline-formula>\u0000 A. The transient figure of merit is 1.48 fs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"25-28"},"PeriodicalIF":2.2,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 28-nm Static-Power-Free Fully Parallel RRAM-Based TD CIM Macro With 1982 TOPS/W/Bit for Edge Applications","authors":"Songtao Wei;Peng Yao;Xinying Guo;Dong Wu;Lu Jie;Qi Qin;Bin Gao;Jianshi Tang;He Qian;Sining Pan;Huaqiang Wu","doi":"10.1109/LSSC.2024.3520593","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3520593","url":null,"abstract":"Analog computing in memory (CIM) based on resistive nonvolatile memory (NVM) has encountered several issues, such as low parallelism, low computing accuracy, and considerable power consumption. In this letter, a temporal unit based on design technology co-optimization (DTCO) for resistive random access memory is proposed for the first time, with the advantage of eliminating dc current and reducing the deviation of mapped weight. A time-domain (TD) array based on the proposed temporal unit features performing fully parallel matrix-vector multiplication (MVM) in a static-power-free manner, without the consideration of IR drop and limited sensing margin (SM). Besides, a low-power time-digital converter (TDC) with local offset elimination further boosts energy efficiency (EF) and computing accuracy. The fabricated 28-nm TD CIM macro achieves a state-of-the-art normalized EF of 1982 and 1387 TOPS/W/bit under 1b-input, ternary-weight and 4b-input, signed 4b-weight, respectively.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"21-24"},"PeriodicalIF":2.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Gasser;Christoph Ribisch;Simon Michael Laube;Kerstin Schneider-Hornstein;Horst Zimmermann
{"title":"Ultrasensitive Reset-Less Integrator-Based PIN-Diode Receiver With Input Current Control","authors":"Christoph Gasser;Christoph Ribisch;Simon Michael Laube;Kerstin Schneider-Hornstein;Horst Zimmermann","doi":"10.1109/LSSC.2024.3520338","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3520338","url":null,"abstract":"This work presents a novel ultrasensitive integrator-based optical frontend that eliminates the need for a reset network to stabilize the operating point. The proposed method introduces a current source at the input node that compensates the average photocurrent. Eliminating the reset phase for the integrator results in better data rate scalability and PVT robustness without the need for correlated double sampling. The full-custom designed PIN-diode receiver was fabricated in 0.35\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000m CMOS and characterized. Using a Manchester encoded PRBS15 bit stream, the best sample achieved a sensitivity of \u0000<inline-formula> <tex-math>$mathbf {-52.93}$ </tex-math></inline-formula>\u0000dBm at a wavelength of 642nm, an effective data rate of 50Mb/s and a bit error ratio of \u0000<inline-formula> <tex-math>$mathbf {2cdot 10^{-3}}$ </tex-math></inline-formula>\u0000. This results in a distance of 20.75 dB to the quantum limit.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"17-20"},"PeriodicalIF":2.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10807184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing AI Acceleration: A Calibration-Free, PVT-Robust Analog Compute-in-Memory Macro With Activation Functions","authors":"Hechen Wang;Renzhi Liu;Richard Dorrance;Deepak Dasalukunte;Niranjan Mylarappa Gowda;Brent Carlton","doi":"10.1109/LSSC.2024.3510679","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3510679","url":null,"abstract":"Most analog compute-in-memory (ACiM) works only focus on the multiple–accumulate (MAC) operation while neglecting the activation function (AF) in the digital domain. The frequent data conversion greatly reduces the benefits obtained by analog computing. This letter proposes an efficient 8-bit in-memory MAC with hybrid capacitor ladders. Then, a sparsity-aware R-2R DAC and an embedded SAR-ADC that reuses the capacitor ladders in the MAC are introduced to reduce the conversion overhead. Two on-chip AF schemes are included to further improve efficiency. Finally, differential signal path offers first-order PVT cancellation that improves computing accuracy and reduces the need for calibration.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"9-12"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 10-Gb/s Optical Receiver With Monolithically Integrated PIN Photodiode, Novel AGC, and Sensitivity of –27.1 dBm for BER 10-3","authors":"Wenyu Zhou;Larry Tarof;Rony E. Amaya","doi":"10.1109/LSSC.2024.3511582","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3511582","url":null,"abstract":"A monolithically integrated optical receiver in InP for 10-Gb/s intensity modulation direct detect (IMDD) application is presented. The sensitivity at the bit error rate (BER) \u0000<inline-formula> <tex-math>$rm 10^{-3}$ </tex-math></inline-formula>\u0000 is measured to be –27.1 dBm. An integrated PIN diode photodetector (PD) minimizes the parasitics caused by wire bonds between the PD and the transimpedance amplifier (TIA). For the first time, electronics and photonics are monolithically integrated into a single InP IC. The avalanche photodetector (APD) is replaced with PIN PD, exhibiting comparable sensitivity and requiring a simple 3.3-V supply voltage. A single transistor voltage-to-current convertor between two cascaded TIAs performs automatic gain control (AGC). A total dynamic gain control of 9 dB has been demonstrated with a dynamic range of more than 17 dB, employing only four transistors and dissipating 8.5 mW. Improved gain peaking extends the operating bandwidth and makes it suitable for higher-speed applications. The power supply rejection ratio (PSRR) exceeds 24 dB without needing on-chip bandgap references.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"13-16"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li
{"title":"A 15.4-ppm/°C GaN-Based Voltage Reference With Process-Variation-Immunity and High PSR for Electric Vehicle Power Systems","authors":"Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li","doi":"10.1109/LSSC.2024.3510597","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3510597","url":null,"abstract":"The proposed gallium nitride (GaN)-based voltage reference (\u0000<inline-formula> <tex-math>$V_{mathrm { REF}}$ </tex-math></inline-formula>\u0000) generator has a low temperature coefficient (TC) of 15.4 ppm/°C, small \u0000<inline-formula> <tex-math>$V_{mathrm { REF}}$ </tex-math></inline-formula>\u0000 deviation at different process corners (standard deviation of 0.22%), line sensitivity as low as 0.0023%/V, and high power supply rejection (PSR) of −187 and −114 dB at 100 Hz and 50 MHz, respectively. The proportional-to-absolute-temperature (PTAT) gate current for enhancement-mode GaN (eGaN) optimizes TC. Eliminating depletion-mode GaN (dGaN) gate leakage and using multiple stacked composite dGaNs can improve line regulation and PSR. All performance is achieved with a low power consumption of \u0000<inline-formula> <tex-math>$10.9~mu $ </tex-math></inline-formula>\u0000W.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"359-362"},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An 828-μW 100.9-dB SNDR 20-kHz BW Zoom-Linear-Exponential Incremental ADC With Split Positive Feedback and Duty-Cycle Amplifier","authors":"Lairong Fang;Shuwen Zhang;Xiaoyang Zeng;Zhiliang Hong;Jiawei Xu","doi":"10.1109/LSSC.2024.3510423","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3510423","url":null,"abstract":"This letter presents a hybrid, three-step zoom-linear-exponential incremental analog-to-digital converter (ZLE-IADC) for audio applications. The zoom-SAR in the first step provides coarse signal quantization and relaxes the accuracy requirements of subsequent conversions. The second step utilizes a single-loop, first-order delta–sigma modulator (\u0000<inline-formula> <tex-math>$Delta Sigma $ </tex-math></inline-formula>\u0000M). In the third step, the \u0000<inline-formula> <tex-math>$Delta Sigma $ </tex-math></inline-formula>\u0000M is reconfigured as an exponential counting loop with split positive feedback (SPF). The SPF isolates the loop integrator from the residue sampling network, thereby improving the settling time of the residue amplifier (RA) under the transient switching of linear-exponential loads. Besides, a duty-cycle RA further reduces its average power from 48.4% to 6.1% of the IADC. Last, the zoom-SAR in the first step is reconfigured as a gain-embedded quantizer (GEQ) in the third step, optimizing the hardware cost. Fabricated in a standard 180-nm CMOS technology, the proposed IADC achieves a dynamic range (DR) of 103.9 dB and a signal-to-noise-and-distortion ratio (SNDR) of 100.9 dB, which corresponds to a state-of-the-art Schreier \u0000<inline-formula> <tex-math>${mathrm { FoM}}_{mathrm { S,{mathrm {DR}}}}$ </tex-math></inline-formula>\u0000 of 177.7 dB.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 0.41-ns CLK-OUT Delay, 0.22-μVrms Input-Referred Noise CMOS Integration Dynamic Comparator With Flipping Capacitor for Charge Reuse","authors":"Kwok Cheong Li;Xinhang Xu;Jihang Gao;Siyuan Ye;Jiajia Cui;Yacong Zhang;Ru Huang;Linxiao Shen","doi":"10.1109/LSSC.2024.3510389","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3510389","url":null,"abstract":"A high-speed and power-efficient CMOS integration dynamic comparator is presented. Low-input-referred noise is accomplished by CMOS integration. To achieve low-power consumption, a charge-reusing scheme by flipping the flying capacitors across the pMOS/nMOS integration nodes is introduced. The 22-nm prototype achieves a 0.22-\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000Vrms input-referred noise with an energy consumption of 227-fJ per conversion, which is improved by \u0000<inline-formula> <tex-math>$2times $ </tex-math></inline-formula>\u0000 compared with the StrongARM counterpart in the same process. Furthermore, with the latch stage embedded, the achieved 0.41-ns CLK-OUT delay shows an over \u0000<inline-formula> <tex-math>$20times $ </tex-math></inline-formula>\u0000 improvement compared with the existing works with CMOS integration.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"5-8"},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Zhong;Konstantinos Vasilakopoulos;Antonio Liscidini
{"title":"A Reconfigurable, Multichannel Quantized-Analog Transmitter With <-35 dB EVM and <-51 dBc ACLR in 22-nm FDSOI","authors":"John Zhong;Konstantinos Vasilakopoulos;Antonio Liscidini","doi":"10.1109/LSSC.2024.3509378","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3509378","url":null,"abstract":"This letter presents a multichannel quantized analog transmitter to maintain the spectral purity of the analog systems while offering radio-frequency digital-to-analog converter flexibility. Consuming 275 mW power, it achieves an EVM of better than −35 dB with an ACLR1/2 of −51/−54 dBc for a 15 MHz 64-QAM signal at 9.4-dBm output power.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"355-358"},"PeriodicalIF":2.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Two-Story Quad-Core Dual-Mode VCO in 65-nm CMOS","authors":"Pingda Guan;Haikun Jia;Wei Deng;Ruichang Ma;Huabing Liao;Teerachot Siriburanon;Robert Bogdan Staszewski;Zhihua Wang;Baoyong Chi","doi":"10.1109/LSSC.2024.3506672","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3506672","url":null,"abstract":"To simultaneously advance phase noise (PN) performance at a wide frequency-tuning range (FTR) while using the standard supply levels, this letter proposes a multistory multicore multimode oscillator topology based on the following ideas: 1) the N number of cores reduces the PN by \u0000<inline-formula> <tex-math>$10 log (N)$ </tex-math></inline-formula>\u0000 dB, and the circular geometry of inductors promotes their high-quality \u0000<inline-formula> <tex-math>$(Q)$ </tex-math></inline-formula>\u0000-factors and compact layout; 2) the multiple stacked cores exploiting current reuse improve the figure of merit (FoM) using an nMOS-only oscillator configuration under a standard supply; and 3) the multiple modes expand the FTR by leveraging the interstory coupling with all oscillator cores turned on simultaneously, only occupying a single resonator’s footprint. A two-story quad-core dual-mode voltage-controlled oscillator (VCO) prototype is fabricated in 65-nm CMOS. Using a standard 1.2-V supply, it achieves PN of −111.3 to −106.2 dBc/Hz at 1-MHz offset over a 25.0–35.9-GHz FTR (35.8%), a 186.5–189.1-dBc/Hz FoM, and a 197.6–200.2-dBc/Hz \u0000<inline-formula> <tex-math>$rm {FoM}_{T}$ </tex-math></inline-formula>\u0000 (i.e., FoM with normalized FTR).","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"363-366"},"PeriodicalIF":2.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}