Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li
{"title":"一种15.4 ppm/°C、过程抗扰度和高PSR的基于gan的电动汽车电源基准电压","authors":"Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li","doi":"10.1109/LSSC.2024.3510597","DOIUrl":null,"url":null,"abstract":"The proposed gallium nitride (GaN)-based voltage reference (\n<inline-formula> <tex-math>$V_{\\mathrm { REF}}$ </tex-math></inline-formula>\n) generator has a low temperature coefficient (TC) of 15.4 ppm/°C, small \n<inline-formula> <tex-math>$V_{\\mathrm { REF}}$ </tex-math></inline-formula>\n deviation at different process corners (standard deviation of 0.22%), line sensitivity as low as 0.0023%/V, and high power supply rejection (PSR) of −187 and −114 dB at 100 Hz and 50 MHz, respectively. The proportional-to-absolute-temperature (PTAT) gate current for enhancement-mode GaN (eGaN) optimizes TC. Eliminating depletion-mode GaN (dGaN) gate leakage and using multiple stacked composite dGaNs can improve line regulation and PSR. All performance is achieved with a low power consumption of \n<inline-formula> <tex-math>$10.9~\\mu $ </tex-math></inline-formula>\nW.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"359-362"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 15.4-ppm/°C GaN-Based Voltage Reference With Process-Variation-Immunity and High PSR for Electric Vehicle Power Systems\",\"authors\":\"Po-Jui Chiu;Chi-Yu Chen;Xiao-Quan Wu;Yu-Ting Huang;Tz-Wun Wang;Sheng-Hsi Hung;Ke-Horng Chen;Kuo-Lin Zheng;Chih-Chen Li\",\"doi\":\"10.1109/LSSC.2024.3510597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed gallium nitride (GaN)-based voltage reference (\\n<inline-formula> <tex-math>$V_{\\\\mathrm { REF}}$ </tex-math></inline-formula>\\n) generator has a low temperature coefficient (TC) of 15.4 ppm/°C, small \\n<inline-formula> <tex-math>$V_{\\\\mathrm { REF}}$ </tex-math></inline-formula>\\n deviation at different process corners (standard deviation of 0.22%), line sensitivity as low as 0.0023%/V, and high power supply rejection (PSR) of −187 and −114 dB at 100 Hz and 50 MHz, respectively. The proportional-to-absolute-temperature (PTAT) gate current for enhancement-mode GaN (eGaN) optimizes TC. Eliminating depletion-mode GaN (dGaN) gate leakage and using multiple stacked composite dGaNs can improve line regulation and PSR. All performance is achieved with a low power consumption of \\n<inline-formula> <tex-math>$10.9~\\\\mu $ </tex-math></inline-formula>\\nW.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"359-362\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772615/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772615/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A 15.4-ppm/°C GaN-Based Voltage Reference With Process-Variation-Immunity and High PSR for Electric Vehicle Power Systems
The proposed gallium nitride (GaN)-based voltage reference (
$V_{\mathrm { REF}}$
) generator has a low temperature coefficient (TC) of 15.4 ppm/°C, small
$V_{\mathrm { REF}}$
deviation at different process corners (standard deviation of 0.22%), line sensitivity as low as 0.0023%/V, and high power supply rejection (PSR) of −187 and −114 dB at 100 Hz and 50 MHz, respectively. The proportional-to-absolute-temperature (PTAT) gate current for enhancement-mode GaN (eGaN) optimizes TC. Eliminating depletion-mode GaN (dGaN) gate leakage and using multiple stacked composite dGaNs can improve line regulation and PSR. All performance is achieved with a low power consumption of
$10.9~\mu $
W.