Micro and Nanostructures最新文献

筛选
英文 中文
Performance and Reliability Investigation of Mg2Si based Tunnel FET under Temperature Variations for High-Sensitivity Applications
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-05 DOI: 10.1016/j.micrna.2025.208084
Bandi Venkata Chandan, Kaushal Kumar Nigam, Adil Tanveer
{"title":"Performance and Reliability Investigation of Mg2Si based Tunnel FET under Temperature Variations for High-Sensitivity Applications","authors":"Bandi Venkata Chandan,&nbsp;Kaushal Kumar Nigam,&nbsp;Adil Tanveer","doi":"10.1016/j.micrna.2025.208084","DOIUrl":"10.1016/j.micrna.2025.208084","url":null,"abstract":"<div><div>Fabrication complexity, low ON-current, and reliability challenges are significant concerns for Tunnel FETs in the semiconductor industry. This study addresses these issues by conducting systematic numerical simulations to introduce a novel N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-based Magnesium Silicide tunneling interface (Mg<sub>2</sub>Si-N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-TFET). Utilizing Mg<sub>2</sub>Si in the source region enhances key figures of merit (FOMs), such as ON-current, V<span><math><msub><mrow></mrow><mrow><mi>T</mi><mi>H</mi></mrow></msub></math></span>, SS, and the switching ratio, due to its low bandgap, which reduces the tunneling barrier. To optimize the device for low-power and high-speed applications, it is essential to assess its reliability under various constraints. Consequently, this study evaluates the Mg<sub>2</sub>Si-N<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>-TFET thermal performance over a temperature range of 250 K to 450 K and exhibits less sensitivity, making it a promising candidate for low-power switching and biosensing applications, even at elevated temperatures.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208084"},"PeriodicalIF":2.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wide range rectifier using Ge-based IT-FinFET for 2.45 GHz microwave wireless power transmission
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-04 DOI: 10.1016/j.micrna.2025.208096
Jianjun Song, Ailan Tang, Sihan Bi, Yue Wu, Yuchen Zhang
{"title":"Wide range rectifier using Ge-based IT-FinFET for 2.45 GHz microwave wireless power transmission","authors":"Jianjun Song,&nbsp;Ailan Tang,&nbsp;Sihan Bi,&nbsp;Yue Wu,&nbsp;Yuchen Zhang","doi":"10.1016/j.micrna.2025.208096","DOIUrl":"10.1016/j.micrna.2025.208096","url":null,"abstract":"<div><div>This paper proposes and designs a composite device, the Ge-based IT-FinFET, which integrates FinFET and SOI MOSFET structures. The device features strong gate control and high driving current capabilities, enabling efficient rectification over a wide range, with promising applications in the field of microwave wireless power transfer. Considering the complex and multifaceted effects caused by variations in the structural parameters of the composite device, this study incorporates multiple critical device parameters, including transfer characteristics and the on/off current ratio, to comprehensively evaluate their impact on electrical performance. The optimal structural parameters for rectification applications are determined through detailed analysis. Simulation results demonstrate that the proposed IT-FinFET achieves efficient rectification over a wide input power range from −20 dBm to 42 dBm, spanning a total range of 62 dBm. Notably, 61 % of the power range achieves rectification efficiencies exceeding 30 %, extending the range by 20 dBm compared to Si-based MOSFET. Furthermore, a range of 13 dBm achieves rectification efficiencies exceeding 50 %, over three times wider than that of Si-based MOSFET. These results underscore the capability of the proposed IT-FinFET to achieve efficient rectification across a broad range of input power levels.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208096"},"PeriodicalIF":2.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation ferroelectric FETs: Modeling of recessed gate cylindrical junction less nanowire FETs for optimal electrostatic and linearity characteristics
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-03 DOI: 10.1016/j.micrna.2025.208095
Abhay Pratap Singh , R.K. Baghel , Sukeshni Tirkey , Alok Kumar
{"title":"Next-generation ferroelectric FETs: Modeling of recessed gate cylindrical junction less nanowire FETs for optimal electrostatic and linearity characteristics","authors":"Abhay Pratap Singh ,&nbsp;R.K. Baghel ,&nbsp;Sukeshni Tirkey ,&nbsp;Alok Kumar","doi":"10.1016/j.micrna.2025.208095","DOIUrl":"10.1016/j.micrna.2025.208095","url":null,"abstract":"<div><div>This study evaluates the performance of a recessed gate (Re-G) dielectric-engineered cylindrical junction less nanowire ferroelectric field-effect transistor (Re-G-CJNFe-FET) in comparison to a conventional cylindrical junction less nanowire ferroelectric field-effect transistor (CJNFe-FET). Introducing a Re-G design enhances the efficiency and overall device performance, achieving significant improvements in key metrics such as sub-threshold slope (SS), leakage current, transconductance (g<sub>m</sub>), output conductance (g<sub>d</sub>), and the Switching ratio (I<sub>ON</sub>/I<sub>OFF</sub>). The proposed device also shows superior performance in the transconductance generation function (TGF) and output conductance (g<sub>d</sub>), early voltage (V<sub>EA</sub>) while maintaining moderate linearity across parameters like second- and third-order harmonics, input intercept point (IIP<sub>3</sub>), voltage intercept points (VIP<sub>2</sub>, VIP<sub>3</sub>), harmonic distortion (HD<sub>2</sub>, HD<sub>3</sub>), 1-db compression, and third-order intermodulation distortion (IMD<sub>3</sub>). Simulation results obtained from the ATLAS 3-D simulator validate these findings, highlighting the potential of the Re-G-CJNFe-FET for analog applications and low power consumption in digital electronics.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208095"},"PeriodicalIF":2.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143168533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced performance of AlGaN solar-blind ultraviolet avalanche photodiodes through electric field optimization
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2024.208047
Jianhua Ma , Huimin Lu , Jinglei Wang , Yifan Zhu , Zihua Zhang , Tongjun Yu , Xuecheng Wei , Hua Yang , Jianping Wang
{"title":"Enhanced performance of AlGaN solar-blind ultraviolet avalanche photodiodes through electric field optimization","authors":"Jianhua Ma ,&nbsp;Huimin Lu ,&nbsp;Jinglei Wang ,&nbsp;Yifan Zhu ,&nbsp;Zihua Zhang ,&nbsp;Tongjun Yu ,&nbsp;Xuecheng Wei ,&nbsp;Hua Yang ,&nbsp;Jianping Wang","doi":"10.1016/j.micrna.2024.208047","DOIUrl":"10.1016/j.micrna.2024.208047","url":null,"abstract":"<div><div>A back-illuminated AlGaN separate absorption and multiplication (SAM) solar-blind ultraviolet (UV) avalanche photodiode (APD) with an enhanced electric field is designed in this work. For the designed APD, a polarization electric field aligned with the applied electric field can be introduced by reducing the Al content of the p-type layer and inserting a multiplication layer with low-Al-content. The calculation results show that the designed APD exhibits a 9.6 V reduction in breakdown voltage, a 29 % increase in avalanche gain, and a 32 % improvement in peak responsivity at the breakdown voltage compared to the conventional SAM APD. In order to maximize the responsivity, further parameter optimization of the multiplication and p-type layers of the designed APD is performed using the Jaya algorithm. The results show that compared to the conventional SAM APD, the peak responsivity at the avalanche breakdown voltage and avalanche gain of the optimized APD are improved by 103 % and 63 %, respectively.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208047"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-sensitivity detection in biosensors: A comparative study of inverted T- and L-channel charge plasma TFETs
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2024.208060
Siva Rama Krishna Gorla, Chandan Kumar Pandey
{"title":"High-sensitivity detection in biosensors: A comparative study of inverted T- and L-channel charge plasma TFETs","authors":"Siva Rama Krishna Gorla,&nbsp;Chandan Kumar Pandey","doi":"10.1016/j.micrna.2024.208060","DOIUrl":"10.1016/j.micrna.2024.208060","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This work presents a comprehensive analysis of a charge plasma vertical TFET based biosensor with an inverted T-shaped channel (IT-CPTFET), demonstrating improved sensitivity in biomolecules detection compared to the conventional L-shaped CPTFET based biosensor (L-CPTFET). Key design considerations include dual cavity positions, split drain region, dual-channel arrangement, and elevated source positions to optimize tunneling rates, resulting in increased drain current and improved sensitivity of the IT-CPTFET. Both IT-CPTFET and L-CPTFET have been explored as label-free biosensors using dielectric modulation, incorporating a nanocavity under the source electrode. By measuring important DC parameters like ON-state current &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, subthreshold swing &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and current-switching ratio (CSR) with the aid of 2D Sentaurus TCAD simulator at different K-values (1.54, 3.57, 6.3, 8, 12) helps to investigate the physics of IT-CPTFET, L-CPTFET and assess their ability to identify various charged and neutral biomolecules. The IT-CPTFET shows superior sensitivity, achieving an &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; sensitivity of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;18&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, compared to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;38&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for the L-CPTFET when detecting Gelatin (K = 12). An increase in the dielectric constant enhances the electric field in the tunneling region, leading to more efficient band-to-band tunneling, which increases the drain current and improves the overall sensitivity of the device. Furthermore, the sensitivity of the device is evaluated with respect to analog and RF parameters that are crucial for practical sensing applications. However, IT-CPTFET offers better performance, demonstrating &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for transconductance sensitivity (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for cut-off frequency sensitivity (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;), while the L-CPTFET shows &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208060"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metallic bowtie antenna for an ultrahigh plasmonic-based improvement of Raman scattering process
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2025.208082
Mohammed Alsawafta
{"title":"Metallic bowtie antenna for an ultrahigh plasmonic-based improvement of Raman scattering process","authors":"Mohammed Alsawafta","doi":"10.1016/j.micrna.2025.208082","DOIUrl":"10.1016/j.micrna.2025.208082","url":null,"abstract":"<div><div>A plasmonic substrate has been suggested as a powerful spectroscopic amplifier to significantly enhance the scattered signal intensity in the Hyper-Raman Scattering (HRS) by exploiting the electromagnetic enhancement effect linked to plasmon excitation in coupled metallic resonators. The proposed dimer configurations include two equilateral nanotriangles of Au material, arranged in an Edge-to-Edge (EE) configuration and illuminated by longitudinally polarized light. For the selected two-particle system, the Finite-Difference Time-Domain (FDTD) electrodynamic simulation tool is employed to systematically investigate the impact of the structural parameters and intrinsic arrangements on the spectral response, nearfield coupling mechanism, and enhancement factor of HRS. Through precise adjustments to the structural characteristics and the internal configuration of the illuminated homodimer, the scattering signal of the HRS process can be increased to an unprecedentedly high value of 10 × 10<sup>23</sup>. This limit can be further enhanced exponentially by increasing the side length of the coupled resonators.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208082"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational modeling of a Sb2S3 /CdxSb2-x(S1-ySey)3 monolithic tandem photocell structure
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2024.208057
Pierre Gérard Darel Kond Ngue , Ariel Teyou Ngoupo , Aimé Magloire Ntouga Abena , Hichem Bencherif , Ismail Hossain , Jean-Marie Bienvenu Ndjaka
{"title":"Computational modeling of a Sb2S3 /CdxSb2-x(S1-ySey)3 monolithic tandem photocell structure","authors":"Pierre Gérard Darel Kond Ngue ,&nbsp;Ariel Teyou Ngoupo ,&nbsp;Aimé Magloire Ntouga Abena ,&nbsp;Hichem Bencherif ,&nbsp;Ismail Hossain ,&nbsp;Jean-Marie Bienvenu Ndjaka","doi":"10.1016/j.micrna.2024.208057","DOIUrl":"10.1016/j.micrna.2024.208057","url":null,"abstract":"<div><div>This paper focuses on the numerical modeling of the quaternary alloy Cd<sub><em>x</em></sub>Sb<sub>2-<em>x</em></sub>(S<sub>1-<em>y</em></sub>Se<sub><em>y</em></sub>)<sub>3</sub> as a lower cell absorber in an Sb<sub>2</sub>S<sub>3</sub>-based tandem system. To this end, the governing laws of the evolution of the band gap and the electron affinity of the alloy are established and solved with reference to the defined substitution proportions. The results show that the band gap of the alloy decreases from 1.88 eV to 0.93 eV with increasing <em>x</em> and <em>y</em> proportions. In a planar heterojunction of FTO/(ZnO/TiO<sub>2</sub>)/Absorber/Spiro-OMeTAD/Au configuration, the Cd<sub><em>x</em></sub>Sb<sub>2-<em>x</em></sub>(S<sub>1-<em>y</em></sub>Se<sub><em>y</em></sub>)<sub>3</sub> alloy, used as the absorber, exhibits a maximum efficiency of 8.81 %, which surpasses the 5.08 % efficiency of the Sb<sub>2</sub>S<sub>3</sub> absorber. For specific band parameters and proportions (Eg = 1.22 eV, χ = 4.25 eV, <em>x</em> = 0.04 and <em>y</em> = 0.9), Cd<sub>0.04</sub>Sb<sub>1.96</sub>(S<sub>0.1</sub>Se<sub>0.9</sub>)<sub>3</sub> is used as the lower solar cell absorber in a tandem structure based on Sb<sub>2</sub>S<sub>3</sub> as the upper cell. After optimization of the absorber thickness, the upper and lower cells demonstrated an efficiency of 8.42 % and 13.74 %. A preliminary simulation of the Sb<sub>2</sub>S<sub>3</sub>/Cd<sub>0.04</sub>Sb<sub>1.96</sub>(S<sub>0.1</sub>Se<sub>0.9</sub>)<sub>3</sub> tandem structure indicated an efficiency of 17.98 %. Following the matching of the current between the upper and lower cells for a thickness of 0.4 μm of each absorber, the Sb<sub>2</sub>S<sub>3</sub>/Cd<sub>0.04</sub>Sb<sub>1.96</sub>(S<sub>0.1</sub>Se<sub>0.9</sub>)<sub>3</sub> tandem solar cell demonstrated an efficiency of 16.19 %. This difference in performance is explained by the lower cell operating in saturation. These results illustrate the prospective applicability of Cd<sub><em>x</em></sub>Sb<sub>2-<em>x</em></sub>(S<sub>1-<em>y</em></sub>Se<sub><em>y</em></sub>)<sub>3</sub> as an absorber material in both single and multi-junction solar cells.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208057"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced optical performance of a dual-drain vertical TFET photosensor for near-infrared light detection
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2024.208051
Chinna Baji Shaik, Chandan Kumar Pandey
{"title":"Enhanced optical performance of a dual-drain vertical TFET photosensor for near-infrared light detection","authors":"Chinna Baji Shaik,&nbsp;Chandan Kumar Pandey","doi":"10.1016/j.micrna.2024.208051","DOIUrl":"10.1016/j.micrna.2024.208051","url":null,"abstract":"<div><div>This paper details the optical performance of a dual-drain vertical TFET (DDV-TFET) based photosensor designed for light detection in the near-infrared (NIR) region (0.7–1.0 μm), employing silicon with N<sup>+</sup> doping as the photosensing gate. The optical performance of DDV-TFET photosensor is assessed by observing the variations in energy band diagram, optical voltage and band-to-band tunnelling rate of the charge carriers under both Light and dark conditions. The incorporation of N<sup>+</sup> pockets and back gate facilitates an increased tunneling rate of charge carriers at the source-channel interface, thereby enhancing the modulation of the channel behavior when light is absorbed inside the photosensing gate. The presented DDV-TFET photosensor demonstrates enhanced optical performance when detecting light at low illumination intensity of 0.5 W/cm<sup>2</sup> incident on the photosensing gate. TCAD-based simulation results reveal that silicon photosensing gate with an optimal thickness of 20 nm and a pocket doping concentration of 1 × 10<sup>19</sup> cm<sup>−3</sup> achieves a sensitivity of 3.59 × 10<sup>5</sup>, a responsivity of 14.8 A/W, a detectivity of 5 × 10<sup>11</sup> Jones and a signal-to-noise ratio (SNR) of 111 dB when detecting incident light in the NIR range. Furthermore, the optical performance of DDV-TFET based photosensor is observed for different <span><math><mrow><mi>k</mi></mrow></math></span>-value of gate oxide and germanium as source material, which reveals that low-<em>k</em> gate oxide offers higher sensitivity and SNR. Conversely, utilizing low band gap source material causes degradation in the sensitivity and SNR of the investigated photosensor.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208051"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Borophene vertical dopingless Tunnel FET with high-κ dielectric and incorporating gate–drain underlapping technique
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2024.208055
Vibhash Choudhary , Manoj Kumar , Nisha Chugh , Jaya Madan
{"title":"Borophene vertical dopingless Tunnel FET with high-κ dielectric and incorporating gate–drain underlapping technique","authors":"Vibhash Choudhary ,&nbsp;Manoj Kumar ,&nbsp;Nisha Chugh ,&nbsp;Jaya Madan","doi":"10.1016/j.micrna.2024.208055","DOIUrl":"10.1016/j.micrna.2024.208055","url":null,"abstract":"<div><div>Tunnel-FETs are ideal for low-power electronic applications, particularly in areas requiring steep subthreshold slope and energy-efficient switching. However, traditional TFETs face major issues, including low ON-current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>), random dopant fluctuations, and ambipolar conduction, which limit their performance and scalability. To address these issues, this study proposes the novel design of a borophene-based vertical dopingless TFET, incorporating a gate–drain underlapping (GDU) technique. The study employs high-<span><math><mi>κ</mi></math></span> dielectrics, specifically <span><math><msub><mrow><mtext>HfO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span>, to improve electrostatic control within the device. Through extensive analysis and optimisation, the proposed device, featuring a 1nm <span><math><msub><mrow><mtext>HfO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> dielectric, achieves a remarkable subthreshold swing of 8.44mV/dec and an impressive <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span> of 2.45<span><math><mo>×</mo></math></span>10<sup>-4</sup> <!-->A/<span><math><mi>μ</mi></math></span>m at a drain bias of 0.5V. The GDU technique effectively suppresses ambipolar conduction and reduces gate-to-drain capacitance, significantly improving device performance. By leveraging borophene’s unique properties and the novel vertical dopingless architecture, this work advances the design of TFETs.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208055"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel 4H–SiC power MOSFET with source-side poly-Si/SiC heterojunctions for single-event effects hardening
IF 2.7
Micro and Nanostructures Pub Date : 2025-02-01 DOI: 10.1016/j.micrna.2024.208064
Qisheng Yu, Wensuo Chen, Jiaweiwen Huang, Zhigang Shen, Zeshun Lin, Haiqing Peng, Hang Shu, Jian Li
{"title":"A novel 4H–SiC power MOSFET with source-side poly-Si/SiC heterojunctions for single-event effects hardening","authors":"Qisheng Yu,&nbsp;Wensuo Chen,&nbsp;Jiaweiwen Huang,&nbsp;Zhigang Shen,&nbsp;Zeshun Lin,&nbsp;Haiqing Peng,&nbsp;Hang Shu,&nbsp;Jian Li","doi":"10.1016/j.micrna.2024.208064","DOIUrl":"10.1016/j.micrna.2024.208064","url":null,"abstract":"<div><div>—A novel SiC power MOSFET structure with Source-side Poly-Si/SiC Heterojunctions (SH-MOS) is proposed by introducing Poly-Si regions of the device's source side. Introducing a P + Poly-Si region at the center of the device helps discharge holes, thereby reducing the accumulation of holes beneath the gate oxide layer caused by heavy ion impacts and improving resistance to single-event gate rupture (SEGR). Besides, The P + Poly-Si and N SiC form a p/n type Poly-Si/SiC heterojunction diode (HJD), effectively improving the device's reverse conduction and recovery performance. In addition, introducing a N + Poly-Si region to replace original N + SiC source region on the source side. Due to the different energy bands of the n/p type Poly-Si/SiC heterojunction, the hole current of parasitic BJT’ emitter increases during the single event irradiation process of SH-MOS. This results in a significant decrease in the current gain of the parasitic BJT, thereby improving its Single Event Burnout (SEB) performance. Simulation results show that under the same irradiation conditions, SH-MOS exhibits superior SEGR and SEB resistance compared to Con-MOS. The SEB threshold voltage of SH-MOS is 660 V, which is 214.29 % higher than the 210 V of the original N + SiC source region MOSFET. In addition, the novel SH-MOS structure reduces VF by 45.36 % and reverse recovery charge (Qrr) by 33.32 % compared to Con-MOS, without causing any significant degradation in forward conduction or blocking characteristics.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208064"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信