Advanced computational modeling and performance optimization of 3D/3D bilayer perovskite heterojunction in monolithic tandem photovoltaic device

IF 3 Q2 PHYSICS, CONDENSED MATTER
Bhupender Singh , Surender Kumar , Jaspinder Kaur , Rikmantra Basu , Ajay Kumar Sharma , Rahul Pandey , Jaya Madan
{"title":"Advanced computational modeling and performance optimization of 3D/3D bilayer perovskite heterojunction in monolithic tandem photovoltaic device","authors":"Bhupender Singh ,&nbsp;Surender Kumar ,&nbsp;Jaspinder Kaur ,&nbsp;Rikmantra Basu ,&nbsp;Ajay Kumar Sharma ,&nbsp;Rahul Pandey ,&nbsp;Jaya Madan","doi":"10.1016/j.micrna.2025.208319","DOIUrl":null,"url":null,"abstract":"<div><div>All-Perovskite tandem solar cells can generate high efficiency with long-term stability at low cost. Metal halide perovskite photovoltaic devices designed with tandem architectures could potentially enhance the efficiency of commercial single-junction solar cells from ∼20 % to ∼30 %. This work presents the design of an all-perovskite tandem solar cell of high efficiency made of perovskite absorber FA<sub>0.8</sub>Cs<sub>0.2</sub>Pb(I<sub>0.6</sub>Br<sub>0.4</sub>)<sub>3</sub> of 1.77 eV energy bandgap in the top cell and FA<sub>0.7</sub>MA<sub>0.3</sub>Pb<sub>0.5</sub>Sn<sub>0.5</sub>I<sub>3</sub> of 1.25 eV energy bandgap in the bottom cell. The narrow bandgap perovskite bottom sub-cell is designed with 3D/3D bilayer perovskite heterojunction between the perovskite absorber layer and electron transport layer to decrease interfacial non-radiative recombination. The standalone solar cell designs are optimized by refining parameters such as thickness, shallow donor/acceptor densities, bulk and interfacial trap densities, etc. These optimized designs are consequently integrated to design a tandem solar cell at current matching conditions and a comprehensive analysis of the designs is done. The designed tandem solar cell has a high efficiency of 30.8 % with short-circuit current density (J<sub>SC</sub>) of 15.9 mA/cm<sup>2</sup>, open-circuit voltage (V<sub>OC</sub>) of 2.25 V, and high fill factor (FF) of 86 %. This simulated design contributes valuable insights for the development of tandem solar cells, supported by comparisons with prior experimental and computational results. The effect of Radiative recombination, Auger Recombination, series resistance and shunt resistance is also analyzed.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208319"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

All-Perovskite tandem solar cells can generate high efficiency with long-term stability at low cost. Metal halide perovskite photovoltaic devices designed with tandem architectures could potentially enhance the efficiency of commercial single-junction solar cells from ∼20 % to ∼30 %. This work presents the design of an all-perovskite tandem solar cell of high efficiency made of perovskite absorber FA0.8Cs0.2Pb(I0.6Br0.4)3 of 1.77 eV energy bandgap in the top cell and FA0.7MA0.3Pb0.5Sn0.5I3 of 1.25 eV energy bandgap in the bottom cell. The narrow bandgap perovskite bottom sub-cell is designed with 3D/3D bilayer perovskite heterojunction between the perovskite absorber layer and electron transport layer to decrease interfacial non-radiative recombination. The standalone solar cell designs are optimized by refining parameters such as thickness, shallow donor/acceptor densities, bulk and interfacial trap densities, etc. These optimized designs are consequently integrated to design a tandem solar cell at current matching conditions and a comprehensive analysis of the designs is done. The designed tandem solar cell has a high efficiency of 30.8 % with short-circuit current density (JSC) of 15.9 mA/cm2, open-circuit voltage (VOC) of 2.25 V, and high fill factor (FF) of 86 %. This simulated design contributes valuable insights for the development of tandem solar cells, supported by comparisons with prior experimental and computational results. The effect of Radiative recombination, Auger Recombination, series resistance and shunt resistance is also analyzed.
单片串联光伏器件中三维/三维双层钙钛矿异质结的先进计算建模和性能优化
全钙钛矿串联太阳能电池具有低成本、高效率、长期稳定的特点。采用串联结构设计的金属卤化物钙钛矿光伏器件可能会将商业单结太阳能电池的效率从~ 20%提高到~ 30%。本文设计了一种高效的全钙钛矿串联太阳能电池,该电池采用钙钛矿吸收剂FA0.8Cs0.2Pb(I0.6Br0.4)3,顶部电池的能带隙为1.77 eV,底部电池的能带隙为1.25 eV,采用FA0.7MA0.3Pb0.5Sn0.5I3。在钙钛矿吸收层和电子传递层之间采用3D/3D双层钙钛矿异质结设计窄带隙钙钛矿底亚电池,以减少界面非辐射复合。通过优化诸如厚度、浅层供体/受体密度、体积和界面陷阱密度等参数,对独立太阳能电池设计进行了优化。因此,将这些优化设计集成到当前匹配条件下的串联太阳能电池设计中,并对设计进行了全面分析。所设计的串联太阳能电池效率为30.8%,短路电流密度(JSC)为15.9 mA/cm2,开路电压(VOC)为2.25 V,高填充系数(FF)为86%。这种模拟设计为串联太阳能电池的发展提供了有价值的见解,并与先前的实验和计算结果进行了比较。分析了辐射复合、俄歇复合、串联电阻和分流电阻的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信