{"title":"Performance investigation of Z-shaped gate dielectric modulated electrically doped junctionless TFET based biosensor for biomedical application","authors":"Dharmender , Kaushal Kumar Nigam , Narender Reddy Kampelli , Piyush Yadav","doi":"10.1016/j.micrna.2025.208373","DOIUrl":"10.1016/j.micrna.2025.208373","url":null,"abstract":"<div><div>This paper presents a novel Z-shaped gate dielectric-modulated electrically doped junctionless tunnel field-effect transistor (ZG-DM-ED-JL-TFET), designed for label-free biomolecule detection in biosensing applications. To enhance detection sensitivity, the device incorporates deliberately misaligned nanogap cavities within both the source and channel region. The electrically doped configuration is established by applying polarity gate voltages of PG-1 = +1.2 V and PG-2 = -1.2 V, which induce the requisite <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> drain and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> source regions without the need for conventional doping techniques thereby reducing fabrication complexity and mitigating random dopant fluctuation (RDF) issues prevalent in conventional TFETs. For biosensing functionality, selective oxide etching is employed to form nanogap cavities adjacent to the source and gate dielectric interfaces, enabling dielectric modulation through biomolecular interaction. The device performance is comprehensively evaluated using Silvaco ATLAS simulations, with key parameters including carrier concentration profiles, energy band diagrams, electric field distribution, band-to-band tunneling (BTBT) rate, transfer characteristics (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>D</mi><mi>S</mi></mrow></msub></math></span> - <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi><mi>S</mi></mrow></msub></math></span>), drain current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>D</mi><mi>S</mi></mrow></msub></math></span>) sensitivity, switching ratio (<span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span>), and subthreshold swing (SS) sensitivity. In-depth analysis further explores the impact of cavity geometry, steric hindrance, fill factor variation, and temperature-dependent responses. The sensor’s effectiveness is assessed using both neutral biomolecules such as uriease (<span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>64</mn></mrow></math></span>), streptavidin (<span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn></mrow></math></span>), APTES (<span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>57</mn></mrow></math></span>), ferrocytochrome c (<span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></math></span>), bacteriophage T7 (<span><math><mrow><mi>k</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>3</mn></mrow></math></span>), keratin (<span><math><mrow><mi>k</mi><mo>=</mo><mn>8</mn></mrow></math></span>), and gelatin (<span><math><mrow><mi>k</mi><mo>=</mo><mn>12</mn></mrow></math></span>) and charged biomolecules with surface charge densities of <span><math><mrow><mo>±</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208373"},"PeriodicalIF":3.0,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zishan Yang , Anqi Li , Zhitao Wang , Feng Huang , Zhaoyang Chen
{"title":"A terahertz sensor based on tunable patterned graphene metamaterial absorber with high absorptivity and sensitivity","authors":"Zishan Yang , Anqi Li , Zhitao Wang , Feng Huang , Zhaoyang Chen","doi":"10.1016/j.micrna.2025.208371","DOIUrl":"10.1016/j.micrna.2025.208371","url":null,"abstract":"<div><div>Terahertz metamaterial sensors hold significant promise in various fields, including biomedicine, agricultural production, non-destructive testing, and national defense security. This study introduces a metamaterial biomedical sensor based on patterned graphene absorber. The absorption spectrum obtained through simulation calculation in the CST microwave studio shows three distinct absorption peaks at 4.40 THz, 5.92 THz, and 8.47 THz, with corresponding absorptivity of 99.62%, 100%, and 88.12%. The simulation results were validated through impedance matching theory, and the formation mechanisms of the three absorption peaks were analyzed by examining electric field intensity, surface current and structural parameters. By modulating the Fermi level of graphene, dual control over absorptivity and resonant frequency can be achieved. Adjusting the relaxation time enables modulation of the absorptivity. Most importantly, the sensor not only demonstrates high absorption efficiency but also achieves a sensitivity of up to 2.717 THz/RIU. Furthermore, it shows potential in detecting basal cell carcinoma (BCC), as evidenced by the significant frequency shift observed between the absorption spectra of normal skin and BCC. The maximum sensitivity for detecting red blood cell infected with malaria reached 3.846 THz/RIU. Consequently, it is believed that the proposed sensor has great application potential in biosensing.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208371"},"PeriodicalIF":3.0,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultra-high performance Si0.5Ge0.5 source Hetero-Dielectric TFET photosensor for near-infrared (NIR) detection","authors":"Chandaboina Pavan Kumar, Manish Kumar Singh","doi":"10.1016/j.micrna.2025.208369","DOIUrl":"10.1016/j.micrna.2025.208369","url":null,"abstract":"<div><div>This work investigates the optical performance of a <span><math><mrow><msub><mrow><mi>Si</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mi>Ge</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> source Hetero-Dielectric (HD) TFET photosensor for detection of light in the near-infrared (NIR) region 750 to 1050 nm. The <span><math><mrow><msub><mrow><mi>Si</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mi>Ge</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> source HD-TFET photosensor incorporates a heterogate configuration with stacked dielectric layers <span><math><mrow><msub><mrow><mi>HfO</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>SiO</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> beneath a silicon photosensing gate <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and employs a <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> <span><math><mrow><msub><mrow><mi>Si</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mi>Ge</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> source, a <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> silicon drain to improve carrier tunneling. The optical response is analyzed under both illuminated and dark conditions by evaluating key physical parameters, including energy band alignment, optical generation rate, band-to-band tunneling (BTBT) rate, and electron density distribution. Sensitivity, Spectral sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>), signal-to-noise ratio (SNR), responsivity (<span><math><mi>R</mi></math></span>), external quantum efficiency (<span><math><mi>η</mi></math></span>), and detectivity (D), are evaluated based on incident light wavelength (<span><math><mi>λ</mi></math></span>) and gate voltage (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>g</mi><mi>s</mi></mrow></msub></math></span>). Simulation results demonstrate that the <span><math><mrow><msub><mrow><mi>Si</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mi>Ge</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> source HD-TFET photosensor achieves superior optical performance, particularly under low-light and NIR conditions, compared to conventional Si-based and Ge-source TFET photosensors. This is attributed to the enhanced BTBT rate and efficient transport of photogenerated carriers enabled by the heterogate structure. Performance metrics are compiled and compared, highlighting the effectiveness of the <span><math><mrow><msub><mrow><mi>Si</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub><msub><mrow><mi>Ge</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> ","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208369"},"PeriodicalIF":3.0,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Banat Gul , Safia Abdullah R Alharbi , Muhammad Salman Khan , Siti Maisarah Aziz
{"title":"Substitutional impact of alkali metals on the electronic structure, optical, mechanical, and transport properties of novel ternary materials","authors":"Banat Gul , Safia Abdullah R Alharbi , Muhammad Salman Khan , Siti Maisarah Aziz","doi":"10.1016/j.micrna.2025.208374","DOIUrl":"10.1016/j.micrna.2025.208374","url":null,"abstract":"<div><div>This study investigates the structure, optoelectronic, mechanical, and transport features of two novel NaAcTe<sub>2</sub> and RbAcTe<sub>2</sub> chalcogenides, using first-principles calculations. Both materials crystallize in the cubic F <span><math><mrow><mover><mi>m</mi><mo>̅</mo></mover></mrow></math></span> 3 m phase, while RbAcTe<sub>2</sub> has higher thermodynamic stability because of its negative formation energy (−3.52 eV/atom) and larger lattice constants. TB-mBJ electronic band structure modelling indicates that both compounds are direct band gap semiconductors, with RbAcTe<sub>2</sub> (1.62 eV) having a larger energy gap than NaAcTe<sub>2</sub> (1.29 eV). The density of states analysis indicates that Te-p and Ac-f/d contributions are prevalent near the Fermi level, suggesting favorable electronic transitions and improved thermoelectric response. NaAcTe<sub>2</sub> has stronger dielectric function peaks, greater absorption in the 4–12 eV range, and larger reflectivity, indicating better light-matter interaction and plasmonic performance. Mechanical investigation shows that both materials are ductile and mechanically stable. RbAcTe<sub>2</sub> has greater elastic constants although NaAcTe<sub>2</sub> is more ductile. NaAcTe<sub>2</sub> has greater electrical conductivity and ZT = 0.32 at 700 K) compared to RbAcTe<sub>2</sub>, which has a higher Seebeck coefficient. These results demonstrate that NaAcTe<sub>2</sub> is appropriate for optical and thermoelectric devices that require a balance of mechanical flexibility and conductivity, whereas RbAcTe<sub>2</sub> is well-suited for high-stability, rigid device configurations.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208374"},"PeriodicalIF":3.0,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahrukh Saif Khan , Muneerah Alomar , Maryam Al Huwayz , Muhammad Imran , Mohammed Jalalah , Amir Muhammad Afzal , M.A. Diab , Saba Khalil , Farid A. Harraz
{"title":"Synergistic electrochemical performance of Mn–Li–S MOF integrated with PANI/rGO for supercapattery and hydrogen production applications","authors":"Mahrukh Saif Khan , Muneerah Alomar , Maryam Al Huwayz , Muhammad Imran , Mohammed Jalalah , Amir Muhammad Afzal , M.A. Diab , Saba Khalil , Farid A. Harraz","doi":"10.1016/j.micrna.2025.208367","DOIUrl":"10.1016/j.micrna.2025.208367","url":null,"abstract":"<div><div>The incorporation of the hydrogen evolution reaction (HER) in energy storage devices can lead to on-demand hydrogen generation alongside energy storage in the form of hydrogen, leading to a dual-functional platform that couples renewable energy storage with sustainable fuel production. In this pursuit, the present research reports the engineering of a hydrothermally synthesized manganese lithium sulfide-based metal-organic framework (MnLiS-MOF) hybrid electrode material, integrated with polyaniline (PANI) and reduced graphene oxide (rGO), for energy storage and HER applications. SEM, EDX, XRD, and XPS analysis confirmed the successful synthesis of the hybrid nanocomposite material, demonstrating the presence of all elemental constituents and an average crystallite size of 86 nm for MnLiS-MOF/PANI/rGO. The MnLiS-MOF/PANI/rGO electrode presented the highest specific capacity (Qs) of 1125.5 C/g for the three-electrode measurement scheme. The MnLiS-MOF/PANI/rGO//AC asymmetric configuration system, with activated carbon (AC) as the second electrode, presented the highest energy density (E<sub>d</sub>) and power density (P<sub>d</sub>) of 48 Wh/kg and 1600 W/kg, respectively. Furthermore, it offers 92 % of stable coulombic efficiency and 90 % of capacity retention stability over 8000 repeated charging and discharging cycles. The MnLiS-MOF/PANI/rGO composite's electrode was found to deliver an ultra-low Tafel slope of 35 mV dec<sup>−1</sup> for the electrocatalytic HER process. The MnLiS-MOF/PANI/rGO exhibits an overpotential of 35 mV, with a Turnover Frequency (TOF) of 112 s<sup>−1</sup>. This excellent performance highlights the material's dual functionality, offering a versatile platform for the integrated design of high-efficiency energy storage and hydrogen generation systems.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208367"},"PeriodicalIF":3.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeesham Abbas , Samah Al-Qaisi , Afaf Khadr Alqorashi , Amna Parveen , Mohd Taukeer Khan
{"title":"First-principles Quantum analysis of novel X4Mg3H14 (X= Li and Na) hydrides: Structural, optoelectronic, and hydrogen storage frontiers","authors":"Zeesham Abbas , Samah Al-Qaisi , Afaf Khadr Alqorashi , Amna Parveen , Mohd Taukeer Khan","doi":"10.1016/j.micrna.2025.208365","DOIUrl":"10.1016/j.micrna.2025.208365","url":null,"abstract":"<div><div>Solid-state hydrogen storage is essential for the progression of sustainable energy technologies, and perovskite hydrides have surfaced as viable options. In this study, we utilize density functional theory (DFT) to examine the structural, electrical, optical, and hydrogen storage characteristics of new X<sub>4</sub>Mg<sub>3</sub>H<sub>1</sub><sub>4</sub> (X = Li and Na) hydrides. The structural study verifies their thermodynamic and dynamic stability, with Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> demonstrating superior stability compared to Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>. Electronic band structures and density of states show that both compounds act like metals. Optical studies reveal notable dielectric responses, absorption peaks, and reflectivity, indicating possible optoelectronic uses. The gravimetric hydrogen storage capabilities are 12.29 wt% for Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> and 7.88 wt% for Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>. These numbers meet and exceed the U.S. DOE goal. The predicted desorption temperatures (335 K for Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> and 339 K for Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>) show that these materials can be stored at high temperatures. These results show that X<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> hydrides, especially Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>, are good candidates for solid-state hydrogen storage applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208365"},"PeriodicalIF":3.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Cao , Xuezhen Wang , Wanzhao Cui , Lei Yao , Yanxing Song , Ying Wang
{"title":"High thermal reliability study of copper-based β-Ga2O3 Schottky diodes with thin Al2O3 insertion layers","authors":"Fei Cao , Xuezhen Wang , Wanzhao Cui , Lei Yao , Yanxing Song , Ying Wang","doi":"10.1016/j.micrna.2025.208363","DOIUrl":"10.1016/j.micrna.2025.208363","url":null,"abstract":"<div><div>In this paper, a 2 nm thin layer of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is deposited between <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Cu Schottky electrodes by the ALD technique to fabricate metal–insulator–semiconductor Schottky barrier diodes (MIS-SBDs). The I–V, C-V and temperature-dependent I–V characteristics (100<span><math><mo>−</mo></math></span>300 °<span><math><mi>C</mi></math></span>) of <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> SBDs with and without the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> layer were systematically analyzed. Analysis of the aforementioned electrical properties reveals that devices with both structures exhibit excellent thermal stability and rectification characteristics. At temperatures as high as 300 °<span><math><mi>C</mi></math></span>, their reverse leakage current density remains at an order of magnitude close to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> A/c<span><math><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, while an on–off ratio as high as <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>9</mn></mrow></msup></mrow></math></span> (<span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>V</mi><mi>F</mi><mo>=</mo><mn>2</mn><mi>V</mi></mrow></msub><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>V</mi><mi>R</mi><mo>=</mo><mo>−</mo><mn>2</mn><mi>V</mi></mrow></msub></mrow></math></span>) is maintained. Compared with MS-type devices, MIS-type devices further reduce the reverse leakage current without compromising their own thermal stability and rectification characteristics, thereby increasing the breakdown voltage. In addition, their forward current density is enhanced, which leads to a significant reduction in specific on-resistance and ultimately achieves the optimization of device performance. In terms of material characterization, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to confirm the uniformity of thin film deposition. Furthermore, scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses verified that the 2 nm Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> thin layer exhibits a certain diffusion barrier effect on the Schottky ","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208363"},"PeriodicalIF":3.0,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145266157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Xu , Yiren Wu , Lianmiao Lv , Jianyu Pan , Zhongjin Wu , Minrui Yang , Changyuan Chen , Changyang Wang , Xiangbiao Yin , Yanfang Xia
{"title":"Study on the structural-magnetic property correlation of Co-doped yttrium iron garnet based on Mössbauer spectroscopy","authors":"Hao Xu , Yiren Wu , Lianmiao Lv , Jianyu Pan , Zhongjin Wu , Minrui Yang , Changyuan Chen , Changyang Wang , Xiangbiao Yin , Yanfang Xia","doi":"10.1016/j.micrna.2025.208358","DOIUrl":"10.1016/j.micrna.2025.208358","url":null,"abstract":"<div><div>This study investigates the effect of Co doping on the structure and magnetic properties of yttrium iron garnet (YIG) prepared by the sol-gel method. When the doping concentration <em>x</em> ≤ 0.15, the introduction of Co<sup>2+</sup> ions causes structural changes, with the lattice parameter increasing from 12.373 Å to 12.394 Å, and the unit-cell volume reaching a maximum of 1904.0 Å<sup>3</sup> at <em>x</em> = 0.15. As a result, the magnetic properties are also modified, with the saturation magnetization (<em>M</em><sub><em>s</em></sub>) increasing from 23.1 emu/g to 28.6 emu/g. At the critical doping concentration (<em>x</em> = 0.15), abnormal lattice contraction and a Jahn-Teller distortion observed, accompanied by local spin disorder and fast relaxation indicated by an additional doublet in Mössbauer spectra, giving rise to optimal soft-magnetic behavior. For <em>x</em> > 0.15, a phase transition from Ia <span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> d to R<span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> occurs, which induces structural reorganization and the formation of antiphase boundaries. The lattice contraction, while <em>M</em><sub><em>s</em></sub> decreases to 23.27 emu/g and coercivity increases. These results demonstrate a direct structure-magnetism correlation and provide guidance for tailoring garnet ferrites for microwave and magneto-optical applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208358"},"PeriodicalIF":3.0,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic field effects on linear and nonlinear absorption and refractive index changes in various excited states of quantum dots","authors":"A. Fakkahi , M. Kirak , A. Sali , S. Yilmaz","doi":"10.1016/j.micrna.2025.208349","DOIUrl":"10.1016/j.micrna.2025.208349","url":null,"abstract":"<div><div>This study focuses on the influence of magnetic fields on the optical properties of multilayered spherical quantum dots, with particular attention to linear and third-order nonlinear absorption and refractive index changes across different excited states. Using the finite element method, we systematically analyze how variations in magnetic field strength affect the optical responses of these nanostructures. The numerical calculations have been performed within the framework of the effective mass approximation. The results reveal that the magnetic field significantly alters both the magnitude and the spectral position of absorption peaks, as well as induces noticeable changes in the refractive index. These effects are strongly dependent on the quantum state under consideration, highlighting the sensitivity of optical properties to magnetic perturbations. This investigation provides deeper insight into the tunability of optical characteristics in quantum dots via external magnetic fields, offering valuable perspectives for the development of magneto-optical and optoelectronic devices.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208349"},"PeriodicalIF":3.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A compact analytical model for performance parameters of MoS2 channel based thickness engineered TFET","authors":"Priya Kaushal, Gargi Khanna","doi":"10.1016/j.micrna.2025.208364","DOIUrl":"10.1016/j.micrna.2025.208364","url":null,"abstract":"<div><div>An analytical model of a thickness engineered Si-doped MoS<sub>2</sub> asymmetric tunnel field effect transistor, is developed and presented in this article. The solution of Poisson's equation with appropriate boundary conditions is the key element of the proposed analytical model. The surface potential (Ψ<sub>si</sub>), lateral and vertical electric fields (E<sub>xi</sub> & E<sub>yi</sub>), drain current (I<sub>ds</sub>), and threshold voltage <span><math><mrow><mfenced><mrow><mrow><msub><mi>ψ</mi><mrow><mi>s</mi><mn>2</mn></mrow></msub><mrow><mfenced><mrow><msub><mi>L</mi><msub><mi>t</mi><mi>min</mi></msub></msub></mrow></mfenced></mrow></mrow></mrow></mfenced></mrow></math></span> are the device parameters for which the models are derived. This study enumerates the first analytical model of a 2D material-based thickness engineered TFET. A very close match with an accuracy value of above 90 % is obtained between simulated results and derived models. The complete device analysis is explained by investigating a variety of biases and channel length. It is observed that, close to the tunneling junction, the proposed Si-doped MoS<sub>2</sub> TFET generates E<sub>xi</sub> and E<sub>yi</sub> of -3x10<sup>6</sup> V/μm and +3.5 × 10<sup>5</sup> V/μm at V<sub>ds</sub> = 1V, respectively, and results in a 7.5х10<sup>−6</sup> A/μm drain current.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208364"},"PeriodicalIF":3.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}