A compact analytical model for performance parameters of MoS2 channel based thickness engineered TFET

IF 3 Q2 PHYSICS, CONDENSED MATTER
Priya Kaushal, Gargi Khanna
{"title":"A compact analytical model for performance parameters of MoS2 channel based thickness engineered TFET","authors":"Priya Kaushal,&nbsp;Gargi Khanna","doi":"10.1016/j.micrna.2025.208364","DOIUrl":null,"url":null,"abstract":"<div><div>An analytical model of a thickness engineered Si-doped MoS<sub>2</sub> asymmetric tunnel field effect transistor, is developed and presented in this article. The solution of Poisson's equation with appropriate boundary conditions is the key element of the proposed analytical model. The surface potential (Ψ<sub>si</sub>), lateral and vertical electric fields (E<sub>xi</sub> &amp; E<sub>yi</sub>), drain current (I<sub>ds</sub>), and threshold voltage <span><math><mrow><mfenced><mrow><mrow><msub><mi>ψ</mi><mrow><mi>s</mi><mn>2</mn></mrow></msub><mrow><mfenced><mrow><msub><mi>L</mi><msub><mi>t</mi><mi>min</mi></msub></msub></mrow></mfenced></mrow></mrow></mrow></mfenced></mrow></math></span> are the device parameters for which the models are derived. This study enumerates the first analytical model of a 2D material-based thickness engineered TFET. A very close match with an accuracy value of above 90 % is obtained between simulated results and derived models. The complete device analysis is explained by investigating a variety of biases and channel length. It is observed that, close to the tunneling junction, the proposed Si-doped MoS<sub>2</sub> TFET generates E<sub>xi</sub> and E<sub>yi</sub> of -3x10<sup>6</sup> V/μm and +3.5 × 10<sup>5</sup> V/μm at V<sub>ds</sub> = 1V, respectively, and results in a 7.5х10<sup>−6</sup> A/μm drain current.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208364"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

An analytical model of a thickness engineered Si-doped MoS2 asymmetric tunnel field effect transistor, is developed and presented in this article. The solution of Poisson's equation with appropriate boundary conditions is the key element of the proposed analytical model. The surface potential (Ψsi), lateral and vertical electric fields (Exi & Eyi), drain current (Ids), and threshold voltage ψs2Ltmin are the device parameters for which the models are derived. This study enumerates the first analytical model of a 2D material-based thickness engineered TFET. A very close match with an accuracy value of above 90 % is obtained between simulated results and derived models. The complete device analysis is explained by investigating a variety of biases and channel length. It is observed that, close to the tunneling junction, the proposed Si-doped MoS2 TFET generates Exi and Eyi of -3x106 V/μm and +3.5 × 105 V/μm at Vds = 1V, respectively, and results in a 7.5х10−6 A/μm drain current.
基于MoS2沟道的厚度工程TFET性能参数的紧凑解析模型
本文建立了一种厚度工程掺硅二硫化钼非对称隧道场效应晶体管的解析模型。在适当的边界条件下,泊松方程的解是该解析模型的关键。表面电位(Ψsi)、横向和垂直电场(Exi & &; Eyi)、漏极电流(Ids)和阈值电压(ψs2Ltmin)是推导出模型的器件参数。本研究列举了第一个二维材料基厚度工程ttfet的分析模型。模拟结果与推导模型的匹配度非常接近,精度达90%以上。完整的器件分析是通过研究各种偏差和通道长度来解释的。结果表明,在隧道结附近,掺硅MoS2 TFET在Vds = 1V时分别产生-3 × 106 V/μm和+3.5 × 105 V/μm的Exi和Eyi,漏极电流为7.5х10−6 a /μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信