薄Al2O3插入层铜基β-Ga2O3肖特基二极管的高热可靠性研究

IF 3 Q2 PHYSICS, CONDENSED MATTER
Fei Cao , Xuezhen Wang , Wanzhao Cui , Lei Yao , Yanxing Song , Ying Wang
{"title":"薄Al2O3插入层铜基β-Ga2O3肖特基二极管的高热可靠性研究","authors":"Fei Cao ,&nbsp;Xuezhen Wang ,&nbsp;Wanzhao Cui ,&nbsp;Lei Yao ,&nbsp;Yanxing Song ,&nbsp;Ying Wang","doi":"10.1016/j.micrna.2025.208363","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a 2 nm thin layer of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is deposited between <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Cu Schottky electrodes by the ALD technique to fabricate metal–insulator–semiconductor Schottky barrier diodes (MIS-SBDs). The I–V, C-V and temperature-dependent I–V characteristics (100<span><math><mo>−</mo></math></span>300 °<span><math><mi>C</mi></math></span>) of <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> SBDs with and without the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> layer were systematically analyzed. Analysis of the aforementioned electrical properties reveals that devices with both structures exhibit excellent thermal stability and rectification characteristics. At temperatures as high as 300 °<span><math><mi>C</mi></math></span>, their reverse leakage current density remains at an order of magnitude close to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> A/c<span><math><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, while an on–off ratio as high as <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>9</mn></mrow></msup></mrow></math></span> (<span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>V</mi><mi>F</mi><mo>=</mo><mn>2</mn><mi>V</mi></mrow></msub><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>V</mi><mi>R</mi><mo>=</mo><mo>−</mo><mn>2</mn><mi>V</mi></mrow></msub></mrow></math></span>) is maintained. Compared with MS-type devices, MIS-type devices further reduce the reverse leakage current without compromising their own thermal stability and rectification characteristics, thereby increasing the breakdown voltage. In addition, their forward current density is enhanced, which leads to a significant reduction in specific on-resistance and ultimately achieves the optimization of device performance. In terms of material characterization, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to confirm the uniformity of thin film deposition. Furthermore, scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses verified that the 2 nm Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> thin layer exhibits a certain diffusion barrier effect on the Schottky metal Cu, which can relatively reduce the diffusion of Cu elements into the gallium oxide substrate. This work presents an effective strategy to enhance the performance of high-power, thermally stable gallium oxide-based electronic devices.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208363"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High thermal reliability study of copper-based β-Ga2O3 Schottky diodes with thin Al2O3 insertion layers\",\"authors\":\"Fei Cao ,&nbsp;Xuezhen Wang ,&nbsp;Wanzhao Cui ,&nbsp;Lei Yao ,&nbsp;Yanxing Song ,&nbsp;Ying Wang\",\"doi\":\"10.1016/j.micrna.2025.208363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a 2 nm thin layer of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is deposited between <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and Cu Schottky electrodes by the ALD technique to fabricate metal–insulator–semiconductor Schottky barrier diodes (MIS-SBDs). The I–V, C-V and temperature-dependent I–V characteristics (100<span><math><mo>−</mo></math></span>300 °<span><math><mi>C</mi></math></span>) of <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> SBDs with and without the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> layer were systematically analyzed. Analysis of the aforementioned electrical properties reveals that devices with both structures exhibit excellent thermal stability and rectification characteristics. At temperatures as high as 300 °<span><math><mi>C</mi></math></span>, their reverse leakage current density remains at an order of magnitude close to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> A/c<span><math><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, while an on–off ratio as high as <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>9</mn></mrow></msup></mrow></math></span> (<span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>V</mi><mi>F</mi><mo>=</mo><mn>2</mn><mi>V</mi></mrow></msub><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>V</mi><mi>R</mi><mo>=</mo><mo>−</mo><mn>2</mn><mi>V</mi></mrow></msub></mrow></math></span>) is maintained. Compared with MS-type devices, MIS-type devices further reduce the reverse leakage current without compromising their own thermal stability and rectification characteristics, thereby increasing the breakdown voltage. In addition, their forward current density is enhanced, which leads to a significant reduction in specific on-resistance and ultimately achieves the optimization of device performance. In terms of material characterization, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to confirm the uniformity of thin film deposition. Furthermore, scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses verified that the 2 nm Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> thin layer exhibits a certain diffusion barrier effect on the Schottky metal Cu, which can relatively reduce the diffusion of Cu elements into the gallium oxide substrate. This work presents an effective strategy to enhance the performance of high-power, thermally stable gallium oxide-based electronic devices.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208363\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文采用ALD技术在β-Ga2O3和Cu肖特基电极之间沉积了一层2 nm的Al2O3薄层,制备了金属-绝缘体-半导体肖特基势垒二极管(missbd)。系统分析了有Al2O3层和无Al2O3层的β-Ga2O3 sdd的I-V、C- v和温度相关的I-V特性(100 ~ 300℃)。对上述电学特性的分析表明,这两种结构的器件都具有优异的热稳定性和整流特性。在高达300°C的温度下,它们的反向泄漏电流密度保持在接近10−7 A/cm2的数量级,而通断比保持高达109 (JVF=2V/JVR=−2V)。与ms型器件相比,mis型器件在不影响自身热稳定性和整流特性的情况下进一步减小了反向漏电流,从而提高了击穿电压。此外,它们的正向电流密度得到增强,导致比导通电阻显著降低,最终实现器件性能的优化。在材料表征方面,采用原子力显微镜(AFM)和扫描电镜(SEM)来确认薄膜沉积的均匀性。此外,扫描透射电镜(STEM)、能量色散x射线能谱(EDX)和x射线衍射(XRD)分析证实,2 nm Al2O3薄层对肖特基金属Cu表现出一定的扩散势垒效应,可以相对减少Cu元素向氧化镓衬底的扩散。这项工作提出了一个有效的策略,以提高高功率,热稳定的氧化镓为基础的电子器件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High thermal reliability study of copper-based β-Ga2O3 Schottky diodes with thin Al2O3 insertion layers
In this paper, a 2 nm thin layer of Al2O3 is deposited between β-Ga2O3 and Cu Schottky electrodes by the ALD technique to fabricate metal–insulator–semiconductor Schottky barrier diodes (MIS-SBDs). The I–V, C-V and temperature-dependent I–V characteristics (100300 °C) of β-Ga2O3 SBDs with and without the Al2O3 layer were systematically analyzed. Analysis of the aforementioned electrical properties reveals that devices with both structures exhibit excellent thermal stability and rectification characteristics. At temperatures as high as 300 °C, their reverse leakage current density remains at an order of magnitude close to 107 A/cm2, while an on–off ratio as high as 109 (JVF=2V/JVR=2V) is maintained. Compared with MS-type devices, MIS-type devices further reduce the reverse leakage current without compromising their own thermal stability and rectification characteristics, thereby increasing the breakdown voltage. In addition, their forward current density is enhanced, which leads to a significant reduction in specific on-resistance and ultimately achieves the optimization of device performance. In terms of material characterization, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to confirm the uniformity of thin film deposition. Furthermore, scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses verified that the 2 nm Al2O3 thin layer exhibits a certain diffusion barrier effect on the Schottky metal Cu, which can relatively reduce the diffusion of Cu elements into the gallium oxide substrate. This work presents an effective strategy to enhance the performance of high-power, thermally stable gallium oxide-based electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信