Synergistic electrochemical performance of Mn–Li–S MOF integrated with PANI/rGO for supercapattery and hydrogen production applications

IF 3 Q2 PHYSICS, CONDENSED MATTER
Mahrukh Saif Khan , Muneerah Alomar , Maryam Al Huwayz , Muhammad Imran , Mohammed Jalalah , Amir Muhammad Afzal , M.A. Diab , Saba Khalil , Farid A. Harraz
{"title":"Synergistic electrochemical performance of Mn–Li–S MOF integrated with PANI/rGO for supercapattery and hydrogen production applications","authors":"Mahrukh Saif Khan ,&nbsp;Muneerah Alomar ,&nbsp;Maryam Al Huwayz ,&nbsp;Muhammad Imran ,&nbsp;Mohammed Jalalah ,&nbsp;Amir Muhammad Afzal ,&nbsp;M.A. Diab ,&nbsp;Saba Khalil ,&nbsp;Farid A. Harraz","doi":"10.1016/j.micrna.2025.208367","DOIUrl":null,"url":null,"abstract":"<div><div>The incorporation of the hydrogen evolution reaction (HER) in energy storage devices can lead to on-demand hydrogen generation alongside energy storage in the form of hydrogen, leading to a dual-functional platform that couples renewable energy storage with sustainable fuel production. In this pursuit, the present research reports the engineering of a hydrothermally synthesized manganese lithium sulfide-based metal-organic framework (MnLiS-MOF) hybrid electrode material, integrated with polyaniline (PANI) and reduced graphene oxide (rGO), for energy storage and HER applications. SEM, EDX, XRD, and XPS analysis confirmed the successful synthesis of the hybrid nanocomposite material, demonstrating the presence of all elemental constituents and an average crystallite size of 86 nm for MnLiS-MOF/PANI/rGO. The MnLiS-MOF/PANI/rGO electrode presented the highest specific capacity (Qs) of 1125.5 C/g for the three-electrode measurement scheme. The MnLiS-MOF/PANI/rGO//AC asymmetric configuration system, with activated carbon (AC) as the second electrode, presented the highest energy density (E<sub>d</sub>) and power density (P<sub>d</sub>) of 48 Wh/kg and 1600 W/kg, respectively. Furthermore, it offers 92 % of stable coulombic efficiency and 90 % of capacity retention stability over 8000 repeated charging and discharging cycles. The MnLiS-MOF/PANI/rGO composite's electrode was found to deliver an ultra-low Tafel slope of 35 mV dec<sup>−1</sup> for the electrocatalytic HER process. The MnLiS-MOF/PANI/rGO exhibits an overpotential of 35 mV, with a Turnover Frequency (TOF) of 112 s<sup>−1</sup>. This excellent performance highlights the material's dual functionality, offering a versatile platform for the integrated design of high-efficiency energy storage and hydrogen generation systems.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208367"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of the hydrogen evolution reaction (HER) in energy storage devices can lead to on-demand hydrogen generation alongside energy storage in the form of hydrogen, leading to a dual-functional platform that couples renewable energy storage with sustainable fuel production. In this pursuit, the present research reports the engineering of a hydrothermally synthesized manganese lithium sulfide-based metal-organic framework (MnLiS-MOF) hybrid electrode material, integrated with polyaniline (PANI) and reduced graphene oxide (rGO), for energy storage and HER applications. SEM, EDX, XRD, and XPS analysis confirmed the successful synthesis of the hybrid nanocomposite material, demonstrating the presence of all elemental constituents and an average crystallite size of 86 nm for MnLiS-MOF/PANI/rGO. The MnLiS-MOF/PANI/rGO electrode presented the highest specific capacity (Qs) of 1125.5 C/g for the three-electrode measurement scheme. The MnLiS-MOF/PANI/rGO//AC asymmetric configuration system, with activated carbon (AC) as the second electrode, presented the highest energy density (Ed) and power density (Pd) of 48 Wh/kg and 1600 W/kg, respectively. Furthermore, it offers 92 % of stable coulombic efficiency and 90 % of capacity retention stability over 8000 repeated charging and discharging cycles. The MnLiS-MOF/PANI/rGO composite's electrode was found to deliver an ultra-low Tafel slope of 35 mV dec−1 for the electrocatalytic HER process. The MnLiS-MOF/PANI/rGO exhibits an overpotential of 35 mV, with a Turnover Frequency (TOF) of 112 s−1. This excellent performance highlights the material's dual functionality, offering a versatile platform for the integrated design of high-efficiency energy storage and hydrogen generation systems.
Mn-Li-S MOF与聚苯胺/氧化石墨烯集成在超级电池和制氢应用中的协同电化学性能
将析氢反应(HER)结合到储能设备中,可以实现按需制氢和氢形式的储能,从而形成一个双功能平台,将可再生能源存储与可持续燃料生产结合起来。在这一追求中,本研究报告了一种水热合成的锰锂硫化基金属有机框架(MnLiS-MOF)杂化电极材料的工程设计,该材料与聚苯胺(PANI)和还原氧化石墨烯(rGO)相结合,用于储能和HER应用。SEM, EDX, XRD和XPS分析证实了混合纳米复合材料的成功合成,表明MnLiS-MOF/PANI/rGO的所有元素成分都存在,平均晶粒尺寸为86 nm。在三电极测量方案中,MnLiS-MOF/PANI/rGO电极的比容量(Qs)最高,为1125.5 C/g。以活性炭(AC)为第二电极的MnLiS-MOF/PANI/rGO/ AC非对称结构体系的最高能量密度(Ed)和功率密度(Pd)分别为48 Wh/kg和1600 W/kg。此外,在8000次重复充放电循环中,它提供了92%的稳定库仑效率和90%的容量保持稳定性。MnLiS-MOF/PANI/rGO复合材料电极具有超低的Tafel斜率(35 mV dec−1),用于电催化HER过程。MnLiS-MOF/PANI/rGO的过电位为35 mV,转换频率(TOF)为112 s−1。这种优异的性能突出了材料的双重功能,为高效储能和制氢系统的集成设计提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信