Performance investigation of Z-shaped gate dielectric modulated electrically doped junctionless TFET based biosensor for biomedical application

IF 3 Q2 PHYSICS, CONDENSED MATTER
Dharmender , Kaushal Kumar Nigam , Narender Reddy Kampelli , Piyush Yadav
{"title":"Performance investigation of Z-shaped gate dielectric modulated electrically doped junctionless TFET based biosensor for biomedical application","authors":"Dharmender ,&nbsp;Kaushal Kumar Nigam ,&nbsp;Narender Reddy Kampelli ,&nbsp;Piyush Yadav","doi":"10.1016/j.micrna.2025.208373","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel Z-shaped gate dielectric-modulated electrically doped junctionless tunnel field-effect transistor (ZG-DM-ED-JL-TFET), designed for label-free biomolecule detection in biosensing applications. To enhance detection sensitivity, the device incorporates deliberately misaligned nanogap cavities within both the source and channel region. The electrically doped configuration is established by applying polarity gate voltages of PG-1 = +1.2 V and PG-2 = -1.2 V, which induce the requisite <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> drain and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> source regions without the need for conventional doping techniques thereby reducing fabrication complexity and mitigating random dopant fluctuation (RDF) issues prevalent in conventional TFETs. For biosensing functionality, selective oxide etching is employed to form nanogap cavities adjacent to the source and gate dielectric interfaces, enabling dielectric modulation through biomolecular interaction. The device performance is comprehensively evaluated using Silvaco ATLAS simulations, with key parameters including carrier concentration profiles, energy band diagrams, electric field distribution, band-to-band tunneling (BTBT) rate, transfer characteristics (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>D</mi><mi>S</mi></mrow></msub></math></span> - <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi><mi>S</mi></mrow></msub></math></span>), drain current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>D</mi><mi>S</mi></mrow></msub></math></span>) sensitivity, switching ratio (<span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span>), and subthreshold swing (SS) sensitivity. In-depth analysis further explores the impact of cavity geometry, steric hindrance, fill factor variation, and temperature-dependent responses. The sensor’s effectiveness is assessed using both neutral biomolecules such as uriease (<span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>64</mn></mrow></math></span>), streptavidin (<span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>1</mn></mrow></math></span>), APTES (<span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>57</mn></mrow></math></span>), ferrocytochrome c (<span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></math></span>), bacteriophage T7 (<span><math><mrow><mi>k</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>3</mn></mrow></math></span>), keratin (<span><math><mrow><mi>k</mi><mo>=</mo><mn>8</mn></mrow></math></span>), and gelatin (<span><math><mrow><mi>k</mi><mo>=</mo><mn>12</mn></mrow></math></span>) and charged biomolecules with surface charge densities of <span><math><mrow><mo>±</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>11</mn></mrow></msup></mrow></math></span> cm<sup>−2</sup>, <span><math><mrow><mo>±</mo><mn>5</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>11</mn></mrow></msup></mrow></math></span> cm<sup>−2</sup>, and <span><math><mrow><mo>±</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>12</mn></mrow></msup></mrow></math></span> cm<sup>−2</sup>. Simulation results validate the ZG-DM-ED-JL-TFET’s high sensitivity, low-power operation, and promising potential for next-generation biomedical diagnostic platforms.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208373"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325003024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel Z-shaped gate dielectric-modulated electrically doped junctionless tunnel field-effect transistor (ZG-DM-ED-JL-TFET), designed for label-free biomolecule detection in biosensing applications. To enhance detection sensitivity, the device incorporates deliberately misaligned nanogap cavities within both the source and channel region. The electrically doped configuration is established by applying polarity gate voltages of PG-1 = +1.2 V and PG-2 = -1.2 V, which induce the requisite n+ drain and p+ source regions without the need for conventional doping techniques thereby reducing fabrication complexity and mitigating random dopant fluctuation (RDF) issues prevalent in conventional TFETs. For biosensing functionality, selective oxide etching is employed to form nanogap cavities adjacent to the source and gate dielectric interfaces, enabling dielectric modulation through biomolecular interaction. The device performance is comprehensively evaluated using Silvaco ATLAS simulations, with key parameters including carrier concentration profiles, energy band diagrams, electric field distribution, band-to-band tunneling (BTBT) rate, transfer characteristics (IDS - VGS), drain current (IDS) sensitivity, switching ratio (ION/IOFF), and subthreshold swing (SS) sensitivity. In-depth analysis further explores the impact of cavity geometry, steric hindrance, fill factor variation, and temperature-dependent responses. The sensor’s effectiveness is assessed using both neutral biomolecules such as uriease (k=1.64), streptavidin (k=2.1), APTES (k=3.57), ferrocytochrome c (k=4.7), bacteriophage T7 (k=6.3), keratin (k=8), and gelatin (k=12) and charged biomolecules with surface charge densities of ±1011 cm−2, ±5×1011 cm−2, and ±1012 cm−2. Simulation results validate the ZG-DM-ED-JL-TFET’s high sensitivity, low-power operation, and promising potential for next-generation biomedical diagnostic platforms.
z型栅极介质调制电掺杂无结TFET生物传感器的性能研究
本文提出了一种新型的z形栅介质调制电掺杂无结隧道场效应晶体管(ZG-DM-ED-JL-TFET),用于生物传感应用中的无标记生物分子检测。为了提高探测灵敏度,该装置在源和通道区域内故意集成了错位的纳米隙腔。通过施加PG-1 = +1.2 V和PG-2 = -1.2 V的极性栅极电压来建立电掺杂结构,可以诱导必要的n+漏极和p+源区,而不需要传统的掺杂技术,从而降低了制造复杂性并减轻了传统tfet中普遍存在的随机掺杂波动(RDF)问题。为了实现生物传感功能,采用选择性氧化物蚀刻在源和栅极介电界面附近形成纳米隙腔,从而通过生物分子相互作用实现介电调制。利用Silvaco ATLAS模拟对器件性能进行了全面评估,关键参数包括载流子浓度曲线、能带图、电场分布、带对带隧道(BTBT)速率、传输特性(IDS - VGS)、漏极电流(IDS)灵敏度、开关比(ION/IOFF)和亚阈值摆幅(SS)灵敏度。深入分析进一步探讨了空腔几何形状、位阻、填充因子变化和温度相关响应的影响。利用中性生物分子如脲酶(k=1.64)、链亲和素(k=2.1)、APTES (k=3.57)、铁细胞色素c (k=4.7)、噬菌体T7 (k=6.3)、角蛋白(k=8)和明胶(k=12)以及表面电荷密度为±1011 cm−2、±5×1011 cm−2和±1012 cm−2的带电生物分子来评估传感器的有效性。仿真结果验证了ZG-DM-ED-JL-TFET的高灵敏度、低功耗工作以及下一代生物医学诊断平台的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信