碱金属对新型三元材料的电子结构、光学、机械和输运性质的取代影响

IF 3 Q2 PHYSICS, CONDENSED MATTER
Banat Gul , Safia Abdullah R Alharbi , Muhammad Salman Khan , Siti Maisarah Aziz
{"title":"碱金属对新型三元材料的电子结构、光学、机械和输运性质的取代影响","authors":"Banat Gul ,&nbsp;Safia Abdullah R Alharbi ,&nbsp;Muhammad Salman Khan ,&nbsp;Siti Maisarah Aziz","doi":"10.1016/j.micrna.2025.208374","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the structure, optoelectronic, mechanical, and transport features of two novel NaAcTe<sub>2</sub> and RbAcTe<sub>2</sub> chalcogenides, using first-principles calculations. Both materials crystallize in the cubic F <span><math><mrow><mover><mi>m</mi><mo>̅</mo></mover></mrow></math></span> 3 m phase, while RbAcTe<sub>2</sub> has higher thermodynamic stability because of its negative formation energy (−3.52 eV/atom) and larger lattice constants. TB-mBJ electronic band structure modelling indicates that both compounds are direct band gap semiconductors, with RbAcTe<sub>2</sub> (1.62 eV) having a larger energy gap than NaAcTe<sub>2</sub> (1.29 eV). The density of states analysis indicates that Te-p and Ac-f/d contributions are prevalent near the Fermi level, suggesting favorable electronic transitions and improved thermoelectric response. NaAcTe<sub>2</sub> has stronger dielectric function peaks, greater absorption in the 4–12 eV range, and larger reflectivity, indicating better light-matter interaction and plasmonic performance. Mechanical investigation shows that both materials are ductile and mechanically stable. RbAcTe<sub>2</sub> has greater elastic constants although NaAcTe<sub>2</sub> is more ductile. NaAcTe<sub>2</sub> has greater electrical conductivity and ZT = 0.32 at 700 K) compared to RbAcTe<sub>2</sub>, which has a higher Seebeck coefficient. These results demonstrate that NaAcTe<sub>2</sub> is appropriate for optical and thermoelectric devices that require a balance of mechanical flexibility and conductivity, whereas RbAcTe<sub>2</sub> is well-suited for high-stability, rigid device configurations.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208374"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substitutional impact of alkali metals on the electronic structure, optical, mechanical, and transport properties of novel ternary materials\",\"authors\":\"Banat Gul ,&nbsp;Safia Abdullah R Alharbi ,&nbsp;Muhammad Salman Khan ,&nbsp;Siti Maisarah Aziz\",\"doi\":\"10.1016/j.micrna.2025.208374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the structure, optoelectronic, mechanical, and transport features of two novel NaAcTe<sub>2</sub> and RbAcTe<sub>2</sub> chalcogenides, using first-principles calculations. Both materials crystallize in the cubic F <span><math><mrow><mover><mi>m</mi><mo>̅</mo></mover></mrow></math></span> 3 m phase, while RbAcTe<sub>2</sub> has higher thermodynamic stability because of its negative formation energy (−3.52 eV/atom) and larger lattice constants. TB-mBJ electronic band structure modelling indicates that both compounds are direct band gap semiconductors, with RbAcTe<sub>2</sub> (1.62 eV) having a larger energy gap than NaAcTe<sub>2</sub> (1.29 eV). The density of states analysis indicates that Te-p and Ac-f/d contributions are prevalent near the Fermi level, suggesting favorable electronic transitions and improved thermoelectric response. NaAcTe<sub>2</sub> has stronger dielectric function peaks, greater absorption in the 4–12 eV range, and larger reflectivity, indicating better light-matter interaction and plasmonic performance. Mechanical investigation shows that both materials are ductile and mechanically stable. RbAcTe<sub>2</sub> has greater elastic constants although NaAcTe<sub>2</sub> is more ductile. NaAcTe<sub>2</sub> has greater electrical conductivity and ZT = 0.32 at 700 K) compared to RbAcTe<sub>2</sub>, which has a higher Seebeck coefficient. These results demonstrate that NaAcTe<sub>2</sub> is appropriate for optical and thermoelectric devices that require a balance of mechanical flexibility and conductivity, whereas RbAcTe<sub>2</sub> is well-suited for high-stability, rigid device configurations.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208374\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325003036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325003036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用第一性原理计算研究了两种新型的NaAcTe2和RbAcTe2硫族化合物的结构、光电、机械和输运特性。两种材料均以立方F m ~ 3 m相结晶,而RbAcTe2由于其负形成能(- 3.52 eV/原子)和较大的晶格常数而具有较高的热力学稳定性。TB-mBJ电子能带结构模型表明,两种化合物均为直接带隙半导体,其中RbAcTe2 (1.62 eV)比NaAcTe2 (1.29 eV)具有更大的能隙。态密度分析表明Te-p和Ac-f/d贡献在费米能级附近普遍存在,表明有利的电子跃迁和改善的热电响应。NaAcTe2具有更强的介电函数峰,在4-12 eV范围内吸收更强,反射率更大,表明具有更好的光-物质相互作用和等离子体性能。力学研究表明,这两种材料都具有延展性和机械稳定性。RbAcTe2具有更大的弹性常数,尽管NaAcTe2具有更大的延展性。与RbAcTe2相比,NaAcTe2具有更高的导电性,在700 K时ZT = 0.32),具有更高的塞贝克系数。这些结果表明,NaAcTe2适用于需要平衡机械灵活性和导电性的光学和热电器件,而RbAcTe2则非常适合高稳定性,刚性器件配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substitutional impact of alkali metals on the electronic structure, optical, mechanical, and transport properties of novel ternary materials
This study investigates the structure, optoelectronic, mechanical, and transport features of two novel NaAcTe2 and RbAcTe2 chalcogenides, using first-principles calculations. Both materials crystallize in the cubic F m̅ 3 m phase, while RbAcTe2 has higher thermodynamic stability because of its negative formation energy (−3.52 eV/atom) and larger lattice constants. TB-mBJ electronic band structure modelling indicates that both compounds are direct band gap semiconductors, with RbAcTe2 (1.62 eV) having a larger energy gap than NaAcTe2 (1.29 eV). The density of states analysis indicates that Te-p and Ac-f/d contributions are prevalent near the Fermi level, suggesting favorable electronic transitions and improved thermoelectric response. NaAcTe2 has stronger dielectric function peaks, greater absorption in the 4–12 eV range, and larger reflectivity, indicating better light-matter interaction and plasmonic performance. Mechanical investigation shows that both materials are ductile and mechanically stable. RbAcTe2 has greater elastic constants although NaAcTe2 is more ductile. NaAcTe2 has greater electrical conductivity and ZT = 0.32 at 700 K) compared to RbAcTe2, which has a higher Seebeck coefficient. These results demonstrate that NaAcTe2 is appropriate for optical and thermoelectric devices that require a balance of mechanical flexibility and conductivity, whereas RbAcTe2 is well-suited for high-stability, rigid device configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信