新型X4Mg3H14 (X= Li和Na)氢化物的第一性原理量子分析:结构、光电和储氢前沿

IF 3 Q2 PHYSICS, CONDENSED MATTER
Zeesham Abbas , Samah Al-Qaisi , Afaf Khadr Alqorashi , Amna Parveen , Mohd Taukeer Khan
{"title":"新型X4Mg3H14 (X= Li和Na)氢化物的第一性原理量子分析:结构、光电和储氢前沿","authors":"Zeesham Abbas ,&nbsp;Samah Al-Qaisi ,&nbsp;Afaf Khadr Alqorashi ,&nbsp;Amna Parveen ,&nbsp;Mohd Taukeer Khan","doi":"10.1016/j.micrna.2025.208365","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state hydrogen storage is essential for the progression of sustainable energy technologies, and perovskite hydrides have surfaced as viable options. In this study, we utilize density functional theory (DFT) to examine the structural, electrical, optical, and hydrogen storage characteristics of new X<sub>4</sub>Mg<sub>3</sub>H<sub>1</sub><sub>4</sub> (X = Li and Na) hydrides. The structural study verifies their thermodynamic and dynamic stability, with Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> demonstrating superior stability compared to Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>. Electronic band structures and density of states show that both compounds act like metals. Optical studies reveal notable dielectric responses, absorption peaks, and reflectivity, indicating possible optoelectronic uses. The gravimetric hydrogen storage capabilities are 12.29 wt% for Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> and 7.88 wt% for Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>. These numbers meet and exceed the U.S. DOE goal. The predicted desorption temperatures (335 K for Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> and 339 K for Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>) show that these materials can be stored at high temperatures. These results show that X<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> hydrides, especially Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>, are good candidates for solid-state hydrogen storage applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208365"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles Quantum analysis of novel X4Mg3H14 (X= Li and Na) hydrides: Structural, optoelectronic, and hydrogen storage frontiers\",\"authors\":\"Zeesham Abbas ,&nbsp;Samah Al-Qaisi ,&nbsp;Afaf Khadr Alqorashi ,&nbsp;Amna Parveen ,&nbsp;Mohd Taukeer Khan\",\"doi\":\"10.1016/j.micrna.2025.208365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid-state hydrogen storage is essential for the progression of sustainable energy technologies, and perovskite hydrides have surfaced as viable options. In this study, we utilize density functional theory (DFT) to examine the structural, electrical, optical, and hydrogen storage characteristics of new X<sub>4</sub>Mg<sub>3</sub>H<sub>1</sub><sub>4</sub> (X = Li and Na) hydrides. The structural study verifies their thermodynamic and dynamic stability, with Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> demonstrating superior stability compared to Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>. Electronic band structures and density of states show that both compounds act like metals. Optical studies reveal notable dielectric responses, absorption peaks, and reflectivity, indicating possible optoelectronic uses. The gravimetric hydrogen storage capabilities are 12.29 wt% for Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> and 7.88 wt% for Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>. These numbers meet and exceed the U.S. DOE goal. The predicted desorption temperatures (335 K for Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> and 339 K for Na<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>) show that these materials can be stored at high temperatures. These results show that X<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub> hydrides, especially Li<sub>4</sub>Mg<sub>3</sub>H<sub>14</sub>, are good candidates for solid-state hydrogen storage applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208365\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

固态储氢对于可持续能源技术的发展至关重要,而钙钛矿氢化物已成为可行的选择。在本研究中,我们利用密度泛函理论(DFT)研究了新型X4Mg3H14 (X = Li和Na)氢化物的结构、电学、光学和储氢特性。结构研究验证了它们的热力学和动力学稳定性,与Na4Mg3H14相比,Li4Mg3H14表现出更好的稳定性。电子能带结构和态密度表明这两种化合物的行为与金属相似。光学研究揭示了显著的介电响应,吸收峰和反射率,表明可能的光电应用。Li4Mg3H14的重量储氢能力为12.29 wt%, Na4Mg3H14的重量储氢能力为7.88 wt%。这些数字达到并超过了美国能源部的目标。预测的解吸温度(Li4Mg3H14为335 K, Na4Mg3H14为339 K)表明这些材料可以在高温下储存。这些结果表明,X4Mg3H14氢化物,特别是Li4Mg3H14,是固态储氢应用的良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-principles Quantum analysis of novel X4Mg3H14 (X= Li and Na) hydrides: Structural, optoelectronic, and hydrogen storage frontiers
Solid-state hydrogen storage is essential for the progression of sustainable energy technologies, and perovskite hydrides have surfaced as viable options. In this study, we utilize density functional theory (DFT) to examine the structural, electrical, optical, and hydrogen storage characteristics of new X4Mg3H14 (X = Li and Na) hydrides. The structural study verifies their thermodynamic and dynamic stability, with Li4Mg3H14 demonstrating superior stability compared to Na4Mg3H14. Electronic band structures and density of states show that both compounds act like metals. Optical studies reveal notable dielectric responses, absorption peaks, and reflectivity, indicating possible optoelectronic uses. The gravimetric hydrogen storage capabilities are 12.29 wt% for Li4Mg3H14 and 7.88 wt% for Na4Mg3H14. These numbers meet and exceed the U.S. DOE goal. The predicted desorption temperatures (335 K for Li4Mg3H14 and 339 K for Na4Mg3H14) show that these materials can be stored at high temperatures. These results show that X4Mg3H14 hydrides, especially Li4Mg3H14, are good candidates for solid-state hydrogen storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信