金纳米颗粒对电阻型氧化镍基MEMS气体传感器性能的影响

IF 3 Q2 PHYSICS, CONDENSED MATTER
Аnastasia Kondrateva , Ivan Komarevtsev , Ilya Lazdin , Yakov Enns , Alexey Kazakin , Elizaveta Fedorenko , Alexandr Shakhmin , Valentina Andreeva , Maxim Mishin , Platon Karaseov
{"title":"金纳米颗粒对电阻型氧化镍基MEMS气体传感器性能的影响","authors":"Аnastasia Kondrateva ,&nbsp;Ivan Komarevtsev ,&nbsp;Ilya Lazdin ,&nbsp;Yakov Enns ,&nbsp;Alexey Kazakin ,&nbsp;Elizaveta Fedorenko ,&nbsp;Alexandr Shakhmin ,&nbsp;Valentina Andreeva ,&nbsp;Maxim Mishin ,&nbsp;Platon Karaseov","doi":"10.1016/j.micrna.2025.208318","DOIUrl":null,"url":null,"abstract":"<div><div>The technology to produce hydrogen sulphide sensor with a sensitive layer based on nickel oxide on a silicon chip is presented. Response of the sensor to H<sub>2</sub>S in concentrations from 1 to 70 ppm at 190 °C operating temperature is investigated. Modification of NiO film with gold nanoparticles (GNPs) significantly improves sensitivity level. The sensing layer made of NiO embedded with GNPs shows five times higher response and improved response time compared to pure nickel oxide one. The response time under 70 ppm H<sub>2</sub>S in Ar exposure is ∼5 s and the recovery time is ∼28 min. The enhanced sensitivity of NiO embedded with GNPs is attributed to (i) the increased crystallinity of NiO grown over the gold nanoparticles and (ii) the spillover effect of GNPs in NiO. MEMS technology used to produce the sensor chip with thin active layers makes it possible to drastically reduce the energy consumption of the sensor.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208318"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of gold nanoparticles on resistive type nickel oxide based MEMS gas sensor properties\",\"authors\":\"Аnastasia Kondrateva ,&nbsp;Ivan Komarevtsev ,&nbsp;Ilya Lazdin ,&nbsp;Yakov Enns ,&nbsp;Alexey Kazakin ,&nbsp;Elizaveta Fedorenko ,&nbsp;Alexandr Shakhmin ,&nbsp;Valentina Andreeva ,&nbsp;Maxim Mishin ,&nbsp;Platon Karaseov\",\"doi\":\"10.1016/j.micrna.2025.208318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The technology to produce hydrogen sulphide sensor with a sensitive layer based on nickel oxide on a silicon chip is presented. Response of the sensor to H<sub>2</sub>S in concentrations from 1 to 70 ppm at 190 °C operating temperature is investigated. Modification of NiO film with gold nanoparticles (GNPs) significantly improves sensitivity level. The sensing layer made of NiO embedded with GNPs shows five times higher response and improved response time compared to pure nickel oxide one. The response time under 70 ppm H<sub>2</sub>S in Ar exposure is ∼5 s and the recovery time is ∼28 min. The enhanced sensitivity of NiO embedded with GNPs is attributed to (i) the increased crystallinity of NiO grown over the gold nanoparticles and (ii) the spillover effect of GNPs in NiO. MEMS technology used to produce the sensor chip with thin active layers makes it possible to drastically reduce the energy consumption of the sensor.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"207 \",\"pages\":\"Article 208318\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277301232500247X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232500247X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

介绍了在硅片上制备具有氧化镍敏感层的硫化氢传感器的技术。在190°C的工作温度下,研究了传感器对H2S浓度从1到70 ppm的响应。用纳米金修饰NiO膜,可以显著提高灵敏度。与纯氧化镍相比,嵌入GNPs的NiO传感层的响应速度和响应时间提高了5倍。在70 ppm H2S条件下,反应时间为~ 5 s,恢复时间为~ 28 min。嵌入GNPs的NiO的灵敏度增强归因于(i) NiO在金纳米颗粒上生长的结晶度增加和(ii) GNPs在NiO中的溢出效应。MEMS技术用于生产具有薄有源层的传感器芯片,可以大大降低传感器的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of gold nanoparticles on resistive type nickel oxide based MEMS gas sensor properties
The technology to produce hydrogen sulphide sensor with a sensitive layer based on nickel oxide on a silicon chip is presented. Response of the sensor to H2S in concentrations from 1 to 70 ppm at 190 °C operating temperature is investigated. Modification of NiO film with gold nanoparticles (GNPs) significantly improves sensitivity level. The sensing layer made of NiO embedded with GNPs shows five times higher response and improved response time compared to pure nickel oxide one. The response time under 70 ppm H2S in Ar exposure is ∼5 s and the recovery time is ∼28 min. The enhanced sensitivity of NiO embedded with GNPs is attributed to (i) the increased crystallinity of NiO grown over the gold nanoparticles and (ii) the spillover effect of GNPs in NiO. MEMS technology used to produce the sensor chip with thin active layers makes it possible to drastically reduce the energy consumption of the sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信