{"title":"一种用于光电和热管理的新型宽带隙半导体,来自HSE06中的DFT和AIMD的见解","authors":"Botan Jawdat Abdullah , Nzar Rauf Abdullah","doi":"10.1016/j.micrna.2025.208312","DOIUrl":null,"url":null,"abstract":"<div><div>LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> has a unique crystalline structure and combines lithium with transition metals. This study investigates the electronic structural, dynamic, thermal, and optical properties of LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> using advanced computational methods, including Density Functional Theory (DFT) with the HSE06 hybrid functional and Ab Initio Molecular Dynamics (AIMD). The material is very stable structurally, as shown by its negative formation energy of -3.226 eV and stable lattice parameters (<span><math><mrow><mi>a</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>76</mn></mrow></math></span> <span><math><mtext>Å</mtext></math></span>, <span><math><mrow><mi>b</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>92</mn></mrow></math></span> <span><math><mtext>Å</mtext></math></span>). The phonon dispersion analysis indicates that the material is stable over time, with no imaginary frequencies and a clear difference between the acoustic and optical phonon modes. The structure’s mechanical stability is confirmed according to fundamental elasticity theory. The phonon PDOS shows that oxygen dominates mid- and high-frequency modes, while lithium contributes at mid frequencies. These vibrations govern the temperature-dependent increase in heat capacity and decrease in thermal conductivity of LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The low thermal conductivity is due to the enhanced phonon scattering rate within the structure, resulting from pronounced anharmonicity. The electronic band structure shows that it is a direct semiconductor with a wide bandgap of 4.82 eV (HSE06), which makes LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> a viable choice for ultraviolet (UV) optoelectronic uses. Its optical properties, such as its dielectric function, refractive index, absorption coefficient, and optical conductivity, show how well it can absorb light and create charge carriers. These findings collectively underscore LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>’s suitability for advanced applications in optoelectronics, thermal management, and energy conversion technologies.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208312"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiTiAlO4: A novel wide band gap semiconductor for optoelectronic and thermal management, insight from DFT and AIMD within HSE06\",\"authors\":\"Botan Jawdat Abdullah , Nzar Rauf Abdullah\",\"doi\":\"10.1016/j.micrna.2025.208312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> has a unique crystalline structure and combines lithium with transition metals. This study investigates the electronic structural, dynamic, thermal, and optical properties of LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> using advanced computational methods, including Density Functional Theory (DFT) with the HSE06 hybrid functional and Ab Initio Molecular Dynamics (AIMD). The material is very stable structurally, as shown by its negative formation energy of -3.226 eV and stable lattice parameters (<span><math><mrow><mi>a</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>76</mn></mrow></math></span> <span><math><mtext>Å</mtext></math></span>, <span><math><mrow><mi>b</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>92</mn></mrow></math></span> <span><math><mtext>Å</mtext></math></span>). The phonon dispersion analysis indicates that the material is stable over time, with no imaginary frequencies and a clear difference between the acoustic and optical phonon modes. The structure’s mechanical stability is confirmed according to fundamental elasticity theory. The phonon PDOS shows that oxygen dominates mid- and high-frequency modes, while lithium contributes at mid frequencies. These vibrations govern the temperature-dependent increase in heat capacity and decrease in thermal conductivity of LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The low thermal conductivity is due to the enhanced phonon scattering rate within the structure, resulting from pronounced anharmonicity. The electronic band structure shows that it is a direct semiconductor with a wide bandgap of 4.82 eV (HSE06), which makes LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> a viable choice for ultraviolet (UV) optoelectronic uses. Its optical properties, such as its dielectric function, refractive index, absorption coefficient, and optical conductivity, show how well it can absorb light and create charge carriers. These findings collectively underscore LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>’s suitability for advanced applications in optoelectronics, thermal management, and energy conversion technologies.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"207 \",\"pages\":\"Article 208312\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
litalo4具有独特的晶体结构,将锂与过渡金属结合在一起。本研究采用先进的计算方法,包括密度泛函理论(DFT)与HSE06混合泛函和从头算分子动力学(AIMD),研究了litalo4的电子结构、动力学、热学和光学性质。该材料结构稳定,形成能为负-3.226 eV,晶格参数稳定(a=5.76 Å, b=5.92 Å)。声子色散分析表明,该材料随时间的推移是稳定的,没有虚频率,并且声子和光学声子模式之间存在明显的差异。根据基本弹性理论,确定了结构的力学稳定性。声子PDOS表明,氧主导中频和高频模式,而锂在中频有贡献。这些振动控制着温度依赖性的热容增加和热导率降低。低导热系数是由于结构内声子散射率的增强,导致明显的非谐波。电子能带结构表明,它是一种具有4.82 eV (HSE06)宽带隙的直接半导体,这使得litalo4成为紫外(UV)光电应用的可行选择。它的光学性质,如介电函数、折射率、吸收系数和光电导率,表明了它吸收光和产生载流子的能力。这些发现共同强调了litalo4在光电子学、热管理和能量转换技术方面的先进应用的适用性。
LiTiAlO4: A novel wide band gap semiconductor for optoelectronic and thermal management, insight from DFT and AIMD within HSE06
LiTiAlO has a unique crystalline structure and combines lithium with transition metals. This study investigates the electronic structural, dynamic, thermal, and optical properties of LiTiAlO using advanced computational methods, including Density Functional Theory (DFT) with the HSE06 hybrid functional and Ab Initio Molecular Dynamics (AIMD). The material is very stable structurally, as shown by its negative formation energy of -3.226 eV and stable lattice parameters ( , ). The phonon dispersion analysis indicates that the material is stable over time, with no imaginary frequencies and a clear difference between the acoustic and optical phonon modes. The structure’s mechanical stability is confirmed according to fundamental elasticity theory. The phonon PDOS shows that oxygen dominates mid- and high-frequency modes, while lithium contributes at mid frequencies. These vibrations govern the temperature-dependent increase in heat capacity and decrease in thermal conductivity of LiTiAlO. The low thermal conductivity is due to the enhanced phonon scattering rate within the structure, resulting from pronounced anharmonicity. The electronic band structure shows that it is a direct semiconductor with a wide bandgap of 4.82 eV (HSE06), which makes LiTiAlO a viable choice for ultraviolet (UV) optoelectronic uses. Its optical properties, such as its dielectric function, refractive index, absorption coefficient, and optical conductivity, show how well it can absorb light and create charge carriers. These findings collectively underscore LiTiAlO’s suitability for advanced applications in optoelectronics, thermal management, and energy conversion technologies.