High rectification efficiency Gate-All-Around Nanosheet and Nanowire nFETs for 2.45 GHz weak energy density microwave wireless power transmission

IF 3 Q2 PHYSICS, CONDENSED MATTER
Huateng Li, Jianjun Song, Yuchen Zhang, Yue Wu, Congyang Huang
{"title":"High rectification efficiency Gate-All-Around Nanosheet and Nanowire nFETs for 2.45 GHz weak energy density microwave wireless power transmission","authors":"Huateng Li,&nbsp;Jianjun Song,&nbsp;Yuchen Zhang,&nbsp;Yue Wu,&nbsp;Congyang Huang","doi":"10.1016/j.micrna.2025.208313","DOIUrl":null,"url":null,"abstract":"<div><div>The 2.45 GHz microwave signals in the environment can be collected by the microwave wireless power transmission system for applications. However, microwave signals in the 2.45 GHz band are in the weak energy density region, and receiver circuits with ordinary Si-based MOSFET as the rectifier device have low rectification efficiency. Therefore, based on Sentaurus TCAD simulation software, this paper designs and optimizes low-threshold-voltage Gate-All-Around (GAA) Nanosheet nFET and Gate-All-Around (GAA) Nanowire nFET models, taking advantage of the common-gate-stacking of GAA devices to achieve high drive current, low reverse leakage current, and low subthreshold swing. Finally, a half-wave rectifier circuit with a 0.1 pF filter capacitor and a 20 kΩ load resistor is constructed using the mixed-mode module of Sentaurus TCAD to validate the rectification performance of the two devices. At an input energy density of −10 dBm, the GAA Nanowire nFET achieves a rectification efficiency of 19.745 %, followed by the GAA Nanosheet nFET at 18.092 % and the Si-based nMOSFET at 10.942 %. At an input energy density of −15 dBm, the rectification efficiency drops to 9.806 %, 8.514 %, and 5.041 % for the GAA Nanowire nFET, the GAA Nanosheet nFET, and Si-based nMOSFET, respectively. These results confirm the superiority of GAA architectures in 2.45 GHz weak energy density microwave rectification, with the Nanowire variant consistently outperforming the Nanosheet counterpart by a small margin.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208313"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The 2.45 GHz microwave signals in the environment can be collected by the microwave wireless power transmission system for applications. However, microwave signals in the 2.45 GHz band are in the weak energy density region, and receiver circuits with ordinary Si-based MOSFET as the rectifier device have low rectification efficiency. Therefore, based on Sentaurus TCAD simulation software, this paper designs and optimizes low-threshold-voltage Gate-All-Around (GAA) Nanosheet nFET and Gate-All-Around (GAA) Nanowire nFET models, taking advantage of the common-gate-stacking of GAA devices to achieve high drive current, low reverse leakage current, and low subthreshold swing. Finally, a half-wave rectifier circuit with a 0.1 pF filter capacitor and a 20 kΩ load resistor is constructed using the mixed-mode module of Sentaurus TCAD to validate the rectification performance of the two devices. At an input energy density of −10 dBm, the GAA Nanowire nFET achieves a rectification efficiency of 19.745 %, followed by the GAA Nanosheet nFET at 18.092 % and the Si-based nMOSFET at 10.942 %. At an input energy density of −15 dBm, the rectification efficiency drops to 9.806 %, 8.514 %, and 5.041 % for the GAA Nanowire nFET, the GAA Nanosheet nFET, and Si-based nMOSFET, respectively. These results confirm the superiority of GAA architectures in 2.45 GHz weak energy density microwave rectification, with the Nanowire variant consistently outperforming the Nanosheet counterpart by a small margin.
用于2.45 GHz弱能量密度微波无线功率传输的高整流效率栅极-全能纳米片和纳米线非场效应管
微波无线电力传输系统可以采集环境中的2.45 GHz微波信号,用于应用。然而,2.45 GHz频段的微波信号处于弱能量密度区,以普通硅基MOSFET作为整流器件的接收电路整流效率较低。因此,本文基于Sentaurus TCAD仿真软件,设计并优化了低阈值电压GAA (gate- all)纳米片非栅极效应和GAA (gate- all)纳米线非栅极效应模型,利用GAA器件的共栅极叠加,实现了高驱动电流、低反漏电流和低亚阈值摆幅。最后,利用Sentaurus TCAD的混模模块构建了带有0.1 pF滤波电容和20 kΩ负载电阻的半波整流电路,验证了两种器件的整流性能。在−10 dBm的输入能量密度下,GAA纳米线nFET的整流效率为19.745%,其次是GAA纳米片nFET的18.092%,si基nMOSFET的整流效率为10.942%。当输入能量密度为- 15 dBm时,GAA纳米线、GAA纳米片和si基nMOSFET的整流效率分别下降到9.806%、8.514%和5.041%。这些结果证实了GAA架构在2.45 GHz弱能量密度微波整流中的优势,其中纳米线版本的性能始终优于纳米片版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信