LiTiAlO4: A novel wide band gap semiconductor for optoelectronic and thermal management, insight from DFT and AIMD within HSE06

IF 3 Q2 PHYSICS, CONDENSED MATTER
Botan Jawdat Abdullah , Nzar Rauf Abdullah
{"title":"LiTiAlO4: A novel wide band gap semiconductor for optoelectronic and thermal management, insight from DFT and AIMD within HSE06","authors":"Botan Jawdat Abdullah ,&nbsp;Nzar Rauf Abdullah","doi":"10.1016/j.micrna.2025.208312","DOIUrl":null,"url":null,"abstract":"<div><div>LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> has a unique crystalline structure and combines lithium with transition metals. This study investigates the electronic structural, dynamic, thermal, and optical properties of LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> using advanced computational methods, including Density Functional Theory (DFT) with the HSE06 hybrid functional and Ab Initio Molecular Dynamics (AIMD). The material is very stable structurally, as shown by its negative formation energy of -3.226 eV and stable lattice parameters (<span><math><mrow><mi>a</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>76</mn></mrow></math></span> <span><math><mtext>Å</mtext></math></span>, <span><math><mrow><mi>b</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>92</mn></mrow></math></span> <span><math><mtext>Å</mtext></math></span>). The phonon dispersion analysis indicates that the material is stable over time, with no imaginary frequencies and a clear difference between the acoustic and optical phonon modes. The structure’s mechanical stability is confirmed according to fundamental elasticity theory. The phonon PDOS shows that oxygen dominates mid- and high-frequency modes, while lithium contributes at mid frequencies. These vibrations govern the temperature-dependent increase in heat capacity and decrease in thermal conductivity of LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The low thermal conductivity is due to the enhanced phonon scattering rate within the structure, resulting from pronounced anharmonicity. The electronic band structure shows that it is a direct semiconductor with a wide bandgap of 4.82 eV (HSE06), which makes LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> a viable choice for ultraviolet (UV) optoelectronic uses. Its optical properties, such as its dielectric function, refractive index, absorption coefficient, and optical conductivity, show how well it can absorb light and create charge carriers. These findings collectively underscore LiTiAlO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>’s suitability for advanced applications in optoelectronics, thermal management, and energy conversion technologies.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208312"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

LiTiAlO4 has a unique crystalline structure and combines lithium with transition metals. This study investigates the electronic structural, dynamic, thermal, and optical properties of LiTiAlO4 using advanced computational methods, including Density Functional Theory (DFT) with the HSE06 hybrid functional and Ab Initio Molecular Dynamics (AIMD). The material is very stable structurally, as shown by its negative formation energy of -3.226 eV and stable lattice parameters (a=5.76 Å, b=5.92 Å). The phonon dispersion analysis indicates that the material is stable over time, with no imaginary frequencies and a clear difference between the acoustic and optical phonon modes. The structure’s mechanical stability is confirmed according to fundamental elasticity theory. The phonon PDOS shows that oxygen dominates mid- and high-frequency modes, while lithium contributes at mid frequencies. These vibrations govern the temperature-dependent increase in heat capacity and decrease in thermal conductivity of LiTiAlO4. The low thermal conductivity is due to the enhanced phonon scattering rate within the structure, resulting from pronounced anharmonicity. The electronic band structure shows that it is a direct semiconductor with a wide bandgap of 4.82 eV (HSE06), which makes LiTiAlO4 a viable choice for ultraviolet (UV) optoelectronic uses. Its optical properties, such as its dielectric function, refractive index, absorption coefficient, and optical conductivity, show how well it can absorb light and create charge carriers. These findings collectively underscore LiTiAlO4’s suitability for advanced applications in optoelectronics, thermal management, and energy conversion technologies.

Abstract Image

一种用于光电和热管理的新型宽带隙半导体,来自HSE06中的DFT和AIMD的见解
litalo4具有独特的晶体结构,将锂与过渡金属结合在一起。本研究采用先进的计算方法,包括密度泛函理论(DFT)与HSE06混合泛函和从头算分子动力学(AIMD),研究了litalo4的电子结构、动力学、热学和光学性质。该材料结构稳定,形成能为负-3.226 eV,晶格参数稳定(a=5.76 Å, b=5.92 Å)。声子色散分析表明,该材料随时间的推移是稳定的,没有虚频率,并且声子和光学声子模式之间存在明显的差异。根据基本弹性理论,确定了结构的力学稳定性。声子PDOS表明,氧主导中频和高频模式,而锂在中频有贡献。这些振动控制着温度依赖性的热容增加和热导率降低。低导热系数是由于结构内声子散射率的增强,导致明显的非谐波。电子能带结构表明,它是一种具有4.82 eV (HSE06)宽带隙的直接半导体,这使得litalo4成为紫外(UV)光电应用的可行选择。它的光学性质,如介电函数、折射率、吸收系数和光电导率,表明了它吸收光和产生载流子的能力。这些发现共同强调了litalo4在光电子学、热管理和能量转换技术方面的先进应用的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信