Cell host & microbe最新文献

筛选
英文 中文
A prophage competition element protects Salmonella from lysis 噬菌体竞争元件保护沙门氏菌不被溶解
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-11-07 DOI: 10.1016/j.chom.2024.10.012
Molly R. Sargen, Sophie Helaine
{"title":"A prophage competition element protects Salmonella from lysis","authors":"Molly R. Sargen, Sophie Helaine","doi":"10.1016/j.chom.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.012","url":null,"abstract":"Most bacteria are polylysogens that carry multiple prophages integrated into the chromosome. These prophages confer advantages to their bacterial host, yet also pose a lethal threat as they can reactivate and enter a lytic cycle. DNA damage of the bacterial host is a common trigger of prophage lytic cycles. Because DNA damage is frequently experienced by bacterial pathogens exposed to host immune defenses, prophage activation may be common during infection. Investigating the consequences of prophage induction in <em>Salmonella</em>, we discover a prophage competition element in the Gifsy-1 prophage that we name ribonuclease effector module with ATPase, inhibitor, and nuclease (RemAIN) because it blocks the lytic cycles and release of viral particles of co-resident prophages. Intramacrophage <em>Salmonella</em> persisters, a subpopulation that incurs DNA damage, experience prophage reactivation and subsequent RemAIN activation, which influences <em>Salmonella</em> persisters and macrophage response to infection. Our findings reveal a multi-layered host-pathogen arms race in which prophage-prophage competition influences bacterial persistence and the mammalian immune response.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"64 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients 抗 PD-1 治疗期间肠道微生物群的纵向分析揭示了黑色素瘤患者反应的稳定微生物特征
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-30 DOI: 10.1016/j.chom.2024.10.006
Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi
{"title":"Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients","authors":"Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi","doi":"10.1016/j.chom.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.006","url":null,"abstract":"Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of <em>Lachnospiraceae</em> (<em>FLach</em>) as structural homologs of tumor-associated antigens, detect <em>FLach</em>-reactive CD8<sup>+</sup> T cells in complete responders before ICI therapy, and demonstrate that <em>FLach</em> peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"62 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of Mycobacterium tuberculosis genomes reveals genetic variations in bacterial virulence 结核分枝杆菌基因组综合分析揭示了细菌毒力的遗传变异
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-28 DOI: 10.1016/j.chom.2024.10.004
Wittawin Worakitchanon, Hideki Yanai, Pundharika Piboonsiri, Reiko Miyahara, Supalert Nedsuwan, Worarat Imsanguan, Boonchai Chaiyasirinroje, Waritta Sawaengdee, Sukanya Wattanapokayakit, Nuanjan Wichukchinda, Yosuke Omae, Prasit Palittapongarnpim, Katsushi Tokunaga, Surakameth Mahasirimongkol, Akihiro Fujimoto
{"title":"Comprehensive analysis of Mycobacterium tuberculosis genomes reveals genetic variations in bacterial virulence","authors":"Wittawin Worakitchanon, Hideki Yanai, Pundharika Piboonsiri, Reiko Miyahara, Supalert Nedsuwan, Worarat Imsanguan, Boonchai Chaiyasirinroje, Waritta Sawaengdee, Sukanya Wattanapokayakit, Nuanjan Wichukchinda, Yosuke Omae, Prasit Palittapongarnpim, Katsushi Tokunaga, Surakameth Mahasirimongkol, Akihiro Fujimoto","doi":"10.1016/j.chom.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.004","url":null,"abstract":"Tuberculosis, a disease caused by <em>Mycobacterium tuberculosis</em> (<em>Mtb</em>), is a significant health problem worldwide. Here, we developed a method to detect large insertions and deletions (indels), which have been generally understudied. Leveraging this framework, we performed a comprehensive analysis of single nucleotide variants and small and large indels across 1,960 <em>Mtb</em> clinical isolates. Comparing the distribution of variants demonstrated that gene disruptive variants are underrepresented in genes essential for bacterial survival. An evolutionary analysis revealed that <em>Mtb</em> genomes are enriched in partially deleterious mutations. Genome-wide association studies identified small and large deletions in <em>eccB2</em> significantly associated with patient prognosis. Additionally, we unveil significant associations with antibiotic resistance in 23 non-canonical genes. Among these, large indels are primarily found in genetic regions of <em>Rv1216c</em>, <em>Rv1217c</em>, <em>fadD11</em>, and <em>ctpD</em>. This study provides a comprehensive catalog of genetic variations and highlights their potential impact for the future treatment and risk prediction of tuberculosis.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"35 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme 元转录组学指导下的多酚代谢肠道微生物酶的发现与表征
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-28 DOI: 10.1016/j.chom.2024.10.002
Minwoo Bae, Chi Le, Raaj S. Mehta, Xueyang Dong, Lindsey M. Pieper, Lorenzo Ramirez, Margaret Alexander, Sina Kiamehr, Peter J. Turnbaugh, Curtis Huttenhower, Andrew T. Chan, Emily P. Balskus
{"title":"Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme","authors":"Minwoo Bae, Chi Le, Raaj S. Mehta, Xueyang Dong, Lindsey M. Pieper, Lorenzo Ramirez, Margaret Alexander, Sina Kiamehr, Peter J. Turnbaugh, Curtis Huttenhower, Andrew T. Chan, Emily P. Balskus","doi":"10.1016/j.chom.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.002","url":null,"abstract":"Gut microbial catechol dehydroxylases are a largely uncharacterized family of metalloenzymes that potentially impact human health by metabolizing dietary polyphenols. Here, we use metatranscriptomics (MTX) to identify highly transcribed catechol-dehydroxylase-encoding genes in human gut microbiomes. We discover a prevalent, previously uncharacterized catechol dehydroxylase (<em>Gp</em> Hcdh) from <em>Gordonibacter pamelaeae</em> that dehydroxylates hydrocaffeic acid (HCA), an anti-inflammatory gut microbial metabolite derived from plant-based foods. Further analyses suggest that the activity of <em>Gp</em> Hcdh may reduce anti-inflammatory benefits of polyphenol-rich foods. Together, these results show the utility of combining MTX analysis and biochemical characterization for gut microbial enzyme discovery and reveal a potential link between host inflammation and a specific polyphenol-metabolizing gut microbial enzyme.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"33 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn’s disease 纯肠内营养启动个体保护性微生物组变化,诱导小儿克罗恩病病情缓解
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-25 DOI: 10.1016/j.chom.2024.10.001
Deborah Häcker, Kolja Siebert, Byron J. Smith, Nikolai Köhler, Alessandra Riva, Aritra Mahapatra, Helena Heimes, Jiatong Nie, Amira Metwaly, Hannes Hölz, Quirin Manz, Federica De Zen, Jeannine Heetmeyer, Katharina Socas, Giang Le Thi, Chen Meng, Karin Kleigrewe, Josch K. Pauling, Klaus Neuhaus, Markus List, Dirk Haller
{"title":"Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn’s disease","authors":"Deborah Häcker, Kolja Siebert, Byron J. Smith, Nikolai Köhler, Alessandra Riva, Aritra Mahapatra, Helena Heimes, Jiatong Nie, Amira Metwaly, Hannes Hölz, Quirin Manz, Federica De Zen, Jeannine Heetmeyer, Katharina Socas, Giang Le Thi, Chen Meng, Karin Kleigrewe, Josch K. Pauling, Klaus Neuhaus, Markus List, Dirk Haller","doi":"10.1016/j.chom.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.001","url":null,"abstract":"Exclusive enteral nutrition (EEN) is a first-line therapy for pediatric Crohn’s disease (CD), but protective mechanisms remain unknown. We established a prospective pediatric cohort to characterize the function of fecal microbiota and metabolite changes of treatment-naive CD patients in response to EEN (German Clinical Trials DRKS00013306). Integrated multi-omics analysis identified network clusters from individually variable microbiome profiles, with <em>Lachnospiraceae</em> and medium-chain fatty acids as protective features. Bioorthogonal non-canonical amino acid tagging selectively identified bacterial species in response to medium-chain fatty acids. Metagenomic analysis identified high strain-level dynamics in response to EEN. Functional changes in diet-exposed fecal microbiota were further validated using gut chemostat cultures and microbiota transfer into germ-free <em>Il10</em>-deficient mice. Dietary model conditions induced individual patient-specific strain signatures to prevent or cause inflammatory bowel disease (IBD)-like inflammation in gnotobiotic mice. Hence, we provide evidence that EEN therapy operates through explicit functional changes of temporally and individually variable microbiome profiles.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"97 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vaginal lactobacilli produce anti-inflammatory β-carboline compounds 阴道乳酸菌产生抗炎的β-咔啉化合物
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-17 DOI: 10.1016/j.chom.2024.09.014
Virginia J. Glick, Cecilia A. Webber, Lauren E. Simmons, Morgan C. Martin, Maryam Ahmad, Cecilia H. Kim, Amanda N.D. Adams, Sunghee Bang, Michael C. Chao, Nicole C. Howard, Sarah M. Fortune, Manasvi Verma, Marco Jost, Lalit K. Beura, Michael J. James, Seo Yoon Lee, Caroline M. Mitchell, Jon Clardy, Ki Hyun Kim, Smita Gopinath
{"title":"Vaginal lactobacilli produce anti-inflammatory β-carboline compounds","authors":"Virginia J. Glick, Cecilia A. Webber, Lauren E. Simmons, Morgan C. Martin, Maryam Ahmad, Cecilia H. Kim, Amanda N.D. Adams, Sunghee Bang, Michael C. Chao, Nicole C. Howard, Sarah M. Fortune, Manasvi Verma, Marco Jost, Lalit K. Beura, Michael J. James, Seo Yoon Lee, Caroline M. Mitchell, Jon Clardy, Ki Hyun Kim, Smita Gopinath","doi":"10.1016/j.chom.2024.09.014","DOIUrl":"https://doi.org/10.1016/j.chom.2024.09.014","url":null,"abstract":"The optimal vaginal microbiome is a <em>Lactobacillus</em>-dominant community. Apart from <em>Lactobacillus iners</em>, the presence of <em>Lactobacillus</em> species is associated with reduced vaginal inflammation and reduced levels of pro-inflammatory cytokines. Loss of <em>Lactobacillus</em>-dominance is associated with inflammatory conditions, such as bacterial vaginosis (BV). We have identified that <em>Lactobacillus crispatus</em>, a key vaginal bacterial species, produces a family of β-carboline compounds with anti-inflammatory activity. These compounds suppress nuclear factor κB (NF-κB) and interferon (IFN) signaling downstream of multiple pattern recognition receptors in primary human cells and significantly dampen type I IFN receptor (IFNAR) activation in monocytes. Topical application of an anti-inflammatory β-carboline compound, perlolyrine, was sufficient to significantly reduce vaginal inflammation in a mouse model of genital herpes infection. These compounds are enriched in cervicovaginal lavage (CVL) of healthy people compared with people with BV. This study identifies a family of compounds by which vaginal lactobacilli mediate host immune homeostasis and highlights a potential therapeutic avenue for vaginal inflammation.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"31 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut symbiont-derived anandamide promotes reward learning in honeybees by activating the endocannabinoid pathway 源自肠道共生菌的安乃近通过激活内源性大麻素途径促进蜜蜂的奖赏学习
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-16 DOI: 10.1016/j.chom.2024.09.013
Zhaopeng Zhong, Xiaohuan Mu, Haoyu Lang, Yueyi Wang, Yanling Jiang, Yuwen Liu, Qian Zeng, Siyuan Xia, Baotong Zhang, Zilong Wang, Xiaofei Wang, Hao Zheng
{"title":"Gut symbiont-derived anandamide promotes reward learning in honeybees by activating the endocannabinoid pathway","authors":"Zhaopeng Zhong, Xiaohuan Mu, Haoyu Lang, Yueyi Wang, Yanling Jiang, Yuwen Liu, Qian Zeng, Siyuan Xia, Baotong Zhang, Zilong Wang, Xiaofei Wang, Hao Zheng","doi":"10.1016/j.chom.2024.09.013","DOIUrl":"https://doi.org/10.1016/j.chom.2024.09.013","url":null,"abstract":"Polyunsaturated fatty acids (PUFAs) are dietary components participating in neurotransmission and cell signaling. Pollen is a source of PUFAs for honeybees, and disruptions in dietary PUFAs reduce the cognitive performance of honeybees. We reveal that gut bacteria of honeybees contribute to fatty acid metabolism, impacting reward learning. Gut bacteria possess Δ-6 desaturases that mediate fatty acid elongation and compensate for the absence of honeybee factors required for fatty acid metabolism. Colonization with <em>Gilliamella apicola</em>, but not a mutant lacking the Δ-6 desaturase FADS2, increases the production of anandamide (AEA), a ligand of the endocannabinoid system, and alters learning and memory. AEA activates the Hymenoptera-specific transient receptor AmHsTRPA in astrocytes, which induces Ca<sup>2+</sup> influx and regulates glutamate re-uptake of glial cells to enhance reward learning. These findings illuminate the roles of gut symbionts in host fatty acid metabolism and the impacts of endocannabinoid signaling on the reward system of social insects.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"71 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SINE RNA of the imprinted miRNA clusters mediates constitutive type III interferon expression and antiviral protection in hemochorial placentas 印迹 miRNA 簇的 SINE RNA 在血胎中介导组成型 III 型干扰素的表达和抗病毒保护
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-12 DOI: 10.1016/j.chom.2024.10.003
Ishani Wickramage, Jeffrey VanWye, Klaas Max, John H. Lockhart, Ismet Hortu, Ezinne F. Mong, John Canfield, Hiran M. Lamabadu Warnakulasuriya Patabendige, Ozlem Guzeloglu-Kayisli, Kimiko Inoue, Atsuo Ogura, Charles J. Lockwood, Kemal M. Akat, Thomas Tuschl, Umit A. Kayisli, Hana Totary-Jain
{"title":"SINE RNA of the imprinted miRNA clusters mediates constitutive type III interferon expression and antiviral protection in hemochorial placentas","authors":"Ishani Wickramage, Jeffrey VanWye, Klaas Max, John H. Lockhart, Ismet Hortu, Ezinne F. Mong, John Canfield, Hiran M. Lamabadu Warnakulasuriya Patabendige, Ozlem Guzeloglu-Kayisli, Kimiko Inoue, Atsuo Ogura, Charles J. Lockwood, Kemal M. Akat, Thomas Tuschl, Umit A. Kayisli, Hana Totary-Jain","doi":"10.1016/j.chom.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.003","url":null,"abstract":"(Cell Host &amp; Microbe <em>31</em>, 1185–1199.e1–e10; July 12, 2023)","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"2 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hospitalization throws the preterm gut microbiome off-key 住院治疗使早产儿肠道微生物群失调
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-09 DOI: 10.1016/j.chom.2024.09.009
Jing Qian, Emily N. Yeo, Matthew R. Olm
{"title":"Hospitalization throws the preterm gut microbiome off-key","authors":"Jing Qian, Emily N. Yeo, Matthew R. Olm","doi":"10.1016/j.chom.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.chom.2024.09.009","url":null,"abstract":"Environmental exposures substantially influence the infant gut microbiome. In this issue of <em>Cell Host &amp; Microbe</em>, Thänert et al.<span><span><sup>1</sup></span></span> characterize how medical interventions in the neonatal intensive care unit (NICU) shape gut microbiome dynamics in the first months of life by analyzing over 2,500 fecal samples with metagenomics and metatranscriptomics.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"37 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiome and bladder cancer: A new link through nitrosamine metabolism 肠道微生物群与膀胱癌:亚硝胺代谢的新联系
IF 30.3 1区 医学
Cell host & microbe Pub Date : 2024-10-09 DOI: 10.1016/j.chom.2024.09.003
Sridhar Mani
{"title":"Gut microbiome and bladder cancer: A new link through nitrosamine metabolism","authors":"Sridhar Mani","doi":"10.1016/j.chom.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.chom.2024.09.003","url":null,"abstract":"A recent <em>Nature</em> paper<span><span><sup>1</sup></span></span> reveals that gut microbes metabolize N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) into the bladder carcinogen N-<em>n</em>-butyl-N-(3-carboxypropyl)-nitrosamine (BCPN) in the intestines, establishing a direct link between gut microbial activity and the development of bladder cancer.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"33 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信