{"title":"肠道微生物衍生的硫酸吲哚促进慢性肾脏疾病的心力衰竭","authors":"Yun Zhang, Xuejie Han, Tao Feng, Zewen Li, Hui Yu, Ye Chen, Yunlong Gao, Qianhui Gao, Linwei Zhang, Shanshan Li, Ling Shi, Xiru Zhang, Zhuang Li, Yue Li, Hongwei Zhou","doi":"10.1016/j.chom.2025.08.014","DOIUrl":null,"url":null,"abstract":"Heart failure (HF) is highly prevalent in chronic kidney disease (CKD) and associates with alterations in gut microbiota, although the underlying mechanisms remain unclear, complicating diagnosis and treatment. In this study, we identify indoxyl sulfate (IS), produced by <em>E. coli</em> through the tryptophanase (TnaA) pathway, as a key metabolite involved in CKD-related HF. Mechanistically, IS disrupts cardiac mitochondrial function and induces myocardial apoptosis via the AHR-CYP1B1 axis, driving HF progression. To target this gut-microbiota-IS axis for clinical improvement of CKD-related HF, we applied probiotics to reduce <em>E. coli</em> abundance and IS levels, resulting in improved cardiac outcomes in rats and CKD patients. This study was registered at the Chinese Clinical Trial Register (<span><span>https://www.chictr.org.cn</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>: ChiCTR2500098366 and ChiCTR2500100588). Furthermore, <em>E. coli</em> abundance shows diagnostic potential for early prediction of HF onset within 6 months in a prospective CKD cohort study. These findings underscore the critical role of gut microbiota in CKD-related HF and suggest a microbiota-targeted therapeutic and diagnostic strategy for clinical intervention.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"15 1","pages":""},"PeriodicalIF":18.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut-microbiota-derived indole sulfate promotes heart failure in chronic kidney disease\",\"authors\":\"Yun Zhang, Xuejie Han, Tao Feng, Zewen Li, Hui Yu, Ye Chen, Yunlong Gao, Qianhui Gao, Linwei Zhang, Shanshan Li, Ling Shi, Xiru Zhang, Zhuang Li, Yue Li, Hongwei Zhou\",\"doi\":\"10.1016/j.chom.2025.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart failure (HF) is highly prevalent in chronic kidney disease (CKD) and associates with alterations in gut microbiota, although the underlying mechanisms remain unclear, complicating diagnosis and treatment. In this study, we identify indoxyl sulfate (IS), produced by <em>E. coli</em> through the tryptophanase (TnaA) pathway, as a key metabolite involved in CKD-related HF. Mechanistically, IS disrupts cardiac mitochondrial function and induces myocardial apoptosis via the AHR-CYP1B1 axis, driving HF progression. To target this gut-microbiota-IS axis for clinical improvement of CKD-related HF, we applied probiotics to reduce <em>E. coli</em> abundance and IS levels, resulting in improved cardiac outcomes in rats and CKD patients. This study was registered at the Chinese Clinical Trial Register (<span><span>https://www.chictr.org.cn</span><svg aria-label=\\\"Opens in new window\\\" focusable=\\\"false\\\" height=\\\"20\\\" viewbox=\\\"0 0 8 8\\\"><path d=\\\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\\\"></path></svg></span>: ChiCTR2500098366 and ChiCTR2500100588). Furthermore, <em>E. coli</em> abundance shows diagnostic potential for early prediction of HF onset within 6 months in a prospective CKD cohort study. These findings underscore the critical role of gut microbiota in CKD-related HF and suggest a microbiota-targeted therapeutic and diagnostic strategy for clinical intervention.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2025.08.014\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.08.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Gut-microbiota-derived indole sulfate promotes heart failure in chronic kidney disease
Heart failure (HF) is highly prevalent in chronic kidney disease (CKD) and associates with alterations in gut microbiota, although the underlying mechanisms remain unclear, complicating diagnosis and treatment. In this study, we identify indoxyl sulfate (IS), produced by E. coli through the tryptophanase (TnaA) pathway, as a key metabolite involved in CKD-related HF. Mechanistically, IS disrupts cardiac mitochondrial function and induces myocardial apoptosis via the AHR-CYP1B1 axis, driving HF progression. To target this gut-microbiota-IS axis for clinical improvement of CKD-related HF, we applied probiotics to reduce E. coli abundance and IS levels, resulting in improved cardiac outcomes in rats and CKD patients. This study was registered at the Chinese Clinical Trial Register (https://www.chictr.org.cn: ChiCTR2500098366 and ChiCTR2500100588). Furthermore, E. coli abundance shows diagnostic potential for early prediction of HF onset within 6 months in a prospective CKD cohort study. These findings underscore the critical role of gut microbiota in CKD-related HF and suggest a microbiota-targeted therapeutic and diagnostic strategy for clinical intervention.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.