{"title":"Inter-kingdom lipid messengers sustain gut harmony","authors":"Jinglin Hou, Xinyang Song","doi":"10.1016/j.chom.2025.09.003","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.003","url":null,"abstract":"In this issue of <em>Cell Host & Microbe</em>, Czauderna et al. reveal that unsaturated long-chain fatty acids (uLCFAs) accumulate in the gut during immune activation, yet are toxic to commensals, notably <em>Blautia producta</em>. Symbiont-encoded oleate hydratase converts uLCFAs into non-toxic hydroxy FAs that suppress pro-inflammatory T cells, thereby regulating immunostasis.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"5 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep learning helps fight against antibiotic resistance","authors":"Antonio Lavecchia","doi":"10.1016/j.chom.2025.09.005","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.005","url":null,"abstract":"In a recent paper published in <em>Cell</em>, Krishnan et al. present a generative deep learning platform that combines graph neural network (GNN)-based fragment screening with <em>de novo</em> molecular design to identify NG1 and DN1, two lead compounds with potent <em>in vivo</em> activity against multidrug-resistant <em>N. gonorrhoeae</em> and methicillin-resistant <em>Staphylococcus aureus</em>.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"775 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic tug-of-war: Mitochondria starve Toxoplasma of folate","authors":"Evie R. Hodgson, Diana Stojanovski","doi":"10.1016/j.chom.2025.09.002","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.002","url":null,"abstract":"In a recent <em>Science</em> paper, Medeiros et al. describe how infected cells use mitochondria as metabolic guardians, outcompeting <em>Toxoplasma</em> parasites for folate, an essential vitamin for DNA synthesis. This metabolic immunity strategy transforms the cell’s powerhouse to an active defender, sequestering nutrients away from invaders in a metabolic tug-of-war.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"11 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Misfortunes never come singly: Microbial metabolites link heart failure and chronic kidney disease","authors":"Jingyuan Fu, Nine V.A.M. Knoers","doi":"10.1016/j.chom.2025.09.001","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.001","url":null,"abstract":"Heart failure is life threatening and common in chronic kidney disease patients. In this issue,<span><span><sup>1</sup></span></span> Zheng et al. report that toxin-generating <em>E. coli</em> tryptophan metabolism induces myocardial apoptosis, contributing to heart failure risk with kidney dysfunction. The authors show that a probiotic product reduces this risk in preclinical and clinical settings.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"24 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lost and found: Reconstituting PRR immune function through co-receptor transfer","authors":"Francisco M. Gordillo-Cantón, Isabel Monte","doi":"10.1016/j.chom.2025.09.004","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.004","url":null,"abstract":"Plant immune receptors hold great promise for engineering broad-spectrum disease resistance, but their effectiveness is very limited by restricted taxonomic functionality (RTF). In this issue of <em>Cell Host & Microbe</em>, Zhang et al. reveal that cross-species co-receptor transfer can overcome RTF in rice, pointing to new strategies for crop protection.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"9 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carving out the microbiota of Earth’s largest biomass reservoir","authors":"Moshe Alon, Omri M. Finkel","doi":"10.1016/j.chom.2025.09.008","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.008","url":null,"abstract":"Despite being an essential part of terrestrial ecosystems for ∼400 million years, the microbiome of wood is surprisingly underexplored. In a recent issue of <em>Nature</em>, Arnold et al. make a long overdue dive into the unique and surprisingly diverse prokaryotic and fungal communities of heartwood and sapwood.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"209 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic clash of Cryptosporidium and its host","authors":"Simona Seizova, Christopher J. Tonkin","doi":"10.1016/j.chom.2025.09.011","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.011","url":null,"abstract":"In recent papers published in <em>Cell</em> and <em>Cell Host and Microbe</em>, Marzook et al. and Huang et al. investigate how <em>Cryptosporidium</em>, an enteric parasite, can acquire nutrients from its host and deals with potentially toxic products. These studies highlight that transporters are likely key to the success of this parasite.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"22 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodrigo de Oliveira Formiga, Qing Li, Yining Zhao, Márcio Augusto Campos Ribeiro, Perle Guarino-Vignon, Rand Fatouh, Leonard Dubois, Laura Creusot, Virginie Puchois, Salomé Amouyal, Iria Alonso Salgueiro, Marius Bredon, Loïc Chollet, Tatiana Ledent, Cyril Scandola, Jean-Philippe Auger, Camille Danne, Gerhard Krönke, Emma Tkacz, Patrick Emond, Harry Sokol
{"title":"Immunometabolic reprogramming of macrophages by gut microbiota-derived cadaverine controls colon inflammation","authors":"Rodrigo de Oliveira Formiga, Qing Li, Yining Zhao, Márcio Augusto Campos Ribeiro, Perle Guarino-Vignon, Rand Fatouh, Leonard Dubois, Laura Creusot, Virginie Puchois, Salomé Amouyal, Iria Alonso Salgueiro, Marius Bredon, Loïc Chollet, Tatiana Ledent, Cyril Scandola, Jean-Philippe Auger, Camille Danne, Gerhard Krönke, Emma Tkacz, Patrick Emond, Harry Sokol","doi":"10.1016/j.chom.2025.09.009","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.009","url":null,"abstract":"Cadaverine is a polyamine produced by the gut microbiota with links to health and disease, notably inflammatory bowel disease (IBD). Here, we show that cadaverine shapes monocyte-macrophage immunometabolism in a context- and concentration-dependent fashion to impact macrophage functionality. At baseline, cadaverine is taken up via L-lysine transporters and activates the thioredoxin system, while during inflammation, cadaverine signals through aconitate decarboxylase 1 (Acod1)-itaconate. Both pathways induce activation of transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which supports mitochondrial respiration and promotes immunoregulatory macrophage polarization. Conversely, under higher concentrations, cadaverine acts via histamine 4 receptor, leading to glycolysis-driven inflammation and pro-inflammatory functions in macrophages. Likewise, cadaverine exhibits paradoxical effects in experimental colitis, either protective or detrimental, evoking opposite fates on macrophages depending on levels dictated by <em>Enterobacteriaceae</em>. In IBD patients, elevated cadaverine correlated with higher flare risk. Our findings implicate cadaverine as a microbiota-derived metabolite manipulating macrophage energy metabolism with consequences in intestinal inflammation and implications for IBD pathogenesis.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"2 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145189273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A bacterial signal coordinates plant-microbe fitness trade-off to enhance sulfur deficiency tolerance in plants","authors":"Arijit Mukherjee, Mrinmoy Mazumder, Arun Verma, Hitesh Tikariha, Raktim Bhattacharya, Qi En Ooi, Sanjay Swarup","doi":"10.1016/j.chom.2025.09.007","DOIUrl":"https://doi.org/10.1016/j.chom.2025.09.007","url":null,"abstract":"Plant-associated microorganisms interact with each other and with host plants via intricate chemical signals, offering multiple benefits, including enhanced nutrition. We report a mechanism through which the rhizosphere microbiome improves plant growth under sulfur (S) deficiency. Disruption of plant S homeostasis caused a coordinated shift in the composition and S-metabolism of the rhizosphere microbiome. Leveraging this, we developed an 18-membered synthetic rhizosphere bacterial community (SynCom) that rescued the growth of <em>Arabidopsis</em> and a leafy Brassicaceae vegetable under S-deficiency. This beneficial trait is taxonomically widespread among SynCom members, with bacterial pairs providing both synergistic and neutral effects on host growth. Notably, stronger competitive interactions among SynCom members conferred greater fitness benefits to the host, suggesting a trans-kingdom (plant-microbe) fitness trade-off. Finally, guided chemical screening, deletion knockout mutants, and targeted metabolomics identified and validated microbially released glutathione (GSH) as the necessary bioactive signal that coordinates the trans-kingdom fitness trade-off and improves plant growth under sulfur limitation.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"18 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145140953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}