Xianhong Zhang, Xue Jin, Jiawei Li, Francisco Dini-Andreote, Hongyu Li, Muhammad Khashi u Rahman, Minmin Du, Fengzhi Wu, Zhong Wei, Xingang Zhou, Marcel G.A. van der Heijden, Matthias C. Rillig
{"title":"Common mycorrhizal networks facilitate plant disease resistance by altering rhizosphere microbiome assembly","authors":"Xianhong Zhang, Xue Jin, Jiawei Li, Francisco Dini-Andreote, Hongyu Li, Muhammad Khashi u Rahman, Minmin Du, Fengzhi Wu, Zhong Wei, Xingang Zhou, Marcel G.A. van der Heijden, Matthias C. Rillig","doi":"10.1016/j.chom.2025.08.016","DOIUrl":null,"url":null,"abstract":"Arbuscular mycorrhizal fungi can interconnect the roots of individual plants by forming common mycorrhizal networks (CMNs). These symbiotic structures can act as conduits for interplant communication. Despite their importance, the mechanisms of signal transfer via CMNs and their implications for plant community performance remain unknown. Here, we demonstrate that CMNs act as a pathway to elicit defense responses in healthy receiver plants connected to pathogen-infected donors. Specifically, we show that donor plants infected by the phytopathogen <em>Botrytis cinerea</em> transfer jasmonic acid via CMNs, which then act as a chemical signal in receiver plants. This signal transfer to receiver plants induces shifts in root exudates, promoting the recruitment of specific microbial taxa (<em>Streptomyces</em> and <em>Actinoplanes</em>) that are directly linked to the suppression of <em>B. cinerea</em> infection. Collectively, our study reveals that CMNs act as interplant chemical communication conduits, transferring signals that contribute to plant disease resistance via modulation of the rhizosphere microbiota.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"19 1","pages":""},"PeriodicalIF":18.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.08.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arbuscular mycorrhizal fungi can interconnect the roots of individual plants by forming common mycorrhizal networks (CMNs). These symbiotic structures can act as conduits for interplant communication. Despite their importance, the mechanisms of signal transfer via CMNs and their implications for plant community performance remain unknown. Here, we demonstrate that CMNs act as a pathway to elicit defense responses in healthy receiver plants connected to pathogen-infected donors. Specifically, we show that donor plants infected by the phytopathogen Botrytis cinerea transfer jasmonic acid via CMNs, which then act as a chemical signal in receiver plants. This signal transfer to receiver plants induces shifts in root exudates, promoting the recruitment of specific microbial taxa (Streptomyces and Actinoplanes) that are directly linked to the suppression of B. cinerea infection. Collectively, our study reveals that CMNs act as interplant chemical communication conduits, transferring signals that contribute to plant disease resistance via modulation of the rhizosphere microbiota.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.