{"title":"INDELible impact: How structural variants drive virulence and resistance","authors":"Alexandra Grote","doi":"10.1016/j.chom.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.007","url":null,"abstract":"Tuberculosis remains a formidable global health challenge, with <em>Mycobacterium tuberculosis</em> responsible for millions of cases and deaths annually. In this issue of <em>Cell Host & Microbe</em>, Worakitchanon et al. present a method to identify structural variants in Mtb and explore associations with bacterial phenotypes such as virulence and antibiotic resistance.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"5 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial small RNA makes a big impact for gut colonization","authors":"Elena Monzel, Mahesh S. Desai","doi":"10.1016/j.chom.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.010","url":null,"abstract":"The functions of non-coding small RNAs (sRNAs) within the human microbiome remain largely unexplored. In this <em>Cell Host & Microbe</em> issue, El Mouali et al. identify <em>Segatella</em> RNA colonization factor (SrcF), a sRNA from a prevalent gut bacterium <em>Segatella copri</em>. SrcF promotes colonization of <em>S. copri</em> by regulating bacterial degradation of complex dietary carbohydrates.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"2 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A small microcin plays a big role in V. cholerae interbacterial competition","authors":"Wei Peng, Kim Orth","doi":"10.1016/j.chom.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.011","url":null,"abstract":"Microcins are antibacterial small proteins secreted by gram-negative bacteria. In this issue of <em>Cell Host & Microbe</em>, Kim et al. report the discovery of a <em>V. cholerae</em> microcin, MvcC. MvcC shows antibacterial activity against non-self <em>V. cholerae</em> strains, which do not encode the cognate immunity protein.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"45 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes","authors":"Charlie Y. Mo","doi":"10.1016/j.chom.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.009","url":null,"abstract":"Bacteriophages have evolved numerous mechanisms to evade targeting by CRISPR-Cas defense systems. However, the evolutionary origin of these so-called “anti-CRISPRs” remains poorly understood. In a recent issue of <em>Nature</em>, Katz et al.<span><span><sup>1</sup></span></span> provide evidence that some anti-CRISPRs were derived from genes of the CRISPR-Cas systems themselves.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"2 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"mRNA vaccines: A promising platform for safer, more effective next-generation Orthopoxvirus immunization","authors":"Xiaonan Han, Qingrui Huang, Jinghua Yan","doi":"10.1016/j.chom.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.014","url":null,"abstract":"In recent work, Mucker et al.<span><span><sup>1</sup></span></span> demonstrated that mRNA-1769 outperforms modified vaccinia Ankara (MVA), which has been deployed against recent mpox virus (MPXV) outbreaks, in reducing clinical symptoms and controlling viral replication, highlighting its potential as a scalable, safe, and effective next-generation platform for orthopoxvirus vaccination.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"35 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbiota-induced alteration of kynurenine metabolism in macrophages drives formation of creeping fat in Crohn’s disease","authors":"Jinjie Wu, Wanyi Zeng, Hongyu Xie, Mujia Cao, Jingyi Yang, Yanchun Xie, Zhanhao Luo, Zongjin Zhang, Haoyang Xu, Weidong Huang, Tingyue Zhou, Jinyu Tan, Xiaomin Wu, Zihuan Yang, Shu Zhu, Ren Mao, Zhen He, Ping Lan","doi":"10.1016/j.chom.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.008","url":null,"abstract":"Hyperplasia of mesenteric tissues in Crohn’s disease, called creeping fat (CrF), is associated with surgical recurrence. Although microbiota translocation and colonization have been found in CrF, convincing mouse phenotypes and the underlying mechanisms of CrF formation remain unclear. Utilizing single-nucleus RNA (snRNA) sequencing of CrF and different mouse models, we demonstrate that the commensal <em>Achromobacter pulmonis</em> induces mesenteric adipogenesis through macrophage alteration. Targeted metabolome analysis reveals that L-kynurenine is the most enriched metabolite in CrF. Upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) enhances kynurenine metabolism and drives mesenteric adipogenesis. Leveraging single-cell RNA (scRNA) sequencing of mouse mesenteric tissues and macrophage-specific IDO1 knockout mice, we verify the role of macrophage-sourced L-kynurenine in mesenteric adipogenesis. Mechanistically, L-kynurenine-induced adipogenesis is mediated by the aryl hydrocarbon receptors in adipocytes. Administration of an IDO1 inhibitor or bacteria engineered to degrade L-kynurenine alleviates mesenteric adipogenesis in mice. Collectively, our study demonstrates that microbiota-induced modulation of macrophage metabolism potentiates CrF formation.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"7 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial alchemists unlock honeybee cognition","authors":"Huihui Sun, Guan-Hong Wang","doi":"10.1016/j.chom.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.013","url":null,"abstract":"In this issue of <em>Cell Host & Microbe</em>, Zhong et al.<span><span><sup>1</sup></span></span> uncover gut microbiota-host connections that promote cognitive function in honeybees. They discover the role of the microbiota in lipid metabolism and the synthesis of lipid-derived neurotransmitters, which modulate the endocannabinoid system.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"36 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beta-carbolines suppress vaginal inflammation","authors":"Cancan Qi, Ri-hua Xie, Yan He, Muxuan Chen","doi":"10.1016/j.chom.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.005","url":null,"abstract":"Vaginal lactobacilli are key regulators of host inflammation, yet the mechanisms remain understudied. In this issue of <em>Cell Host & Microbe</em>, Glick et al. identify a family of beta-carbolines as anti-inflammatory effectors produced by vaginal <em>Lactobacillus</em> species, highlighting their potential as therapeutics for vaginal inflammatory disorders.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"95 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A prophage competition element protects Salmonella from lysis","authors":"Molly R. Sargen, Sophie Helaine","doi":"10.1016/j.chom.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.012","url":null,"abstract":"Most bacteria are polylysogens that carry multiple prophages integrated into the chromosome. These prophages confer advantages to their bacterial host, yet also pose a lethal threat as they can reactivate and enter a lytic cycle. DNA damage of the bacterial host is a common trigger of prophage lytic cycles. Because DNA damage is frequently experienced by bacterial pathogens exposed to host immune defenses, prophage activation may be common during infection. Investigating the consequences of prophage induction in <em>Salmonella</em>, we discover a prophage competition element in the Gifsy-1 prophage that we name ribonuclease effector module with ATPase, inhibitor, and nuclease (RemAIN) because it blocks the lytic cycles and release of viral particles of co-resident prophages. Intramacrophage <em>Salmonella</em> persisters, a subpopulation that incurs DNA damage, experience prophage reactivation and subsequent RemAIN activation, which influences <em>Salmonella</em> persisters and macrophage response to infection. Our findings reveal a multi-layered host-pathogen arms race in which prophage-prophage competition influences bacterial persistence and the mammalian immune response.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"64 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi
{"title":"Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients","authors":"Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi","doi":"10.1016/j.chom.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.chom.2024.10.006","url":null,"abstract":"Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of <em>Lachnospiraceae</em> (<em>FLach</em>) as structural homologs of tumor-associated antigens, detect <em>FLach</em>-reactive CD8<sup>+</sup> T cells in complete responders before ICI therapy, and demonstrate that <em>FLach</em> peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"62 1","pages":""},"PeriodicalIF":30.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}