Sarah K. Munyoki, Julie P. Goff, Amanda Reshke, Erin Wilderoter, Nyasha Mafarachisi, Antonija Kolobaric, Yi Sheng, Steven J. Mullett, Gabrielle E. King, Jacob D. DeSchepper, Richard J. Bookser, Carlos A. Castro, Stacy L. Gelhaus, Mayara Grizotte-Lake, Kathleen E. Morrison, Anthony J. Zeleznik, Timothy W. Hand, Miguel A. Brieño-Enriquez, Eldin Jašarević
{"title":"微生物群通过保护卵巢储备来延长小鼠的生殖寿命","authors":"Sarah K. Munyoki, Julie P. Goff, Amanda Reshke, Erin Wilderoter, Nyasha Mafarachisi, Antonija Kolobaric, Yi Sheng, Steven J. Mullett, Gabrielle E. King, Jacob D. DeSchepper, Richard J. Bookser, Carlos A. Castro, Stacy L. Gelhaus, Mayara Grizotte-Lake, Kathleen E. Morrison, Anthony J. Zeleznik, Timothy W. Hand, Miguel A. Brieño-Enriquez, Eldin Jašarević","doi":"10.1016/j.chom.2025.09.006","DOIUrl":null,"url":null,"abstract":"Infertility affects one in six people, but the underlying mechanisms remain unclear. We show that the microbiota governs female reproductive longevity in mice. Germ-free mice have fewer primordial follicles, increased atresia, and ovarian fibrosis, leading to smaller litters, fewer offspring, and a shorter reproductive lifespan. Germ-free mice are born with a similar ovarian reserve but display excessive activation, impaired progression, and increased atresia during post-natal development. Microbiome colonization during a critical post-natal window rescues premature ovarian reserve loss by normalizing follicle kinetics and gene expression patterns. These changes parallel increased short-chain fatty acids (SCFAs), and SCFA administration mitigates ovarian dysfunction in germ-free mice. Similar oocyte dysfunction occurred in conventionally raised mice fed a high-fat diet, but additional dietary fiber helped preserve oocyte quality and embryo competence. Thus, host-microbe interactions shape female fertility, and microbiota-targeted interventions may offer strategies to address reproductive disorders.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"99 1","pages":""},"PeriodicalIF":18.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The microbiota extends the reproductive lifespan of mice by safeguarding the ovarian reserve\",\"authors\":\"Sarah K. Munyoki, Julie P. Goff, Amanda Reshke, Erin Wilderoter, Nyasha Mafarachisi, Antonija Kolobaric, Yi Sheng, Steven J. Mullett, Gabrielle E. King, Jacob D. DeSchepper, Richard J. Bookser, Carlos A. Castro, Stacy L. Gelhaus, Mayara Grizotte-Lake, Kathleen E. Morrison, Anthony J. Zeleznik, Timothy W. Hand, Miguel A. Brieño-Enriquez, Eldin Jašarević\",\"doi\":\"10.1016/j.chom.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infertility affects one in six people, but the underlying mechanisms remain unclear. We show that the microbiota governs female reproductive longevity in mice. Germ-free mice have fewer primordial follicles, increased atresia, and ovarian fibrosis, leading to smaller litters, fewer offspring, and a shorter reproductive lifespan. Germ-free mice are born with a similar ovarian reserve but display excessive activation, impaired progression, and increased atresia during post-natal development. Microbiome colonization during a critical post-natal window rescues premature ovarian reserve loss by normalizing follicle kinetics and gene expression patterns. These changes parallel increased short-chain fatty acids (SCFAs), and SCFA administration mitigates ovarian dysfunction in germ-free mice. Similar oocyte dysfunction occurred in conventionally raised mice fed a high-fat diet, but additional dietary fiber helped preserve oocyte quality and embryo competence. Thus, host-microbe interactions shape female fertility, and microbiota-targeted interventions may offer strategies to address reproductive disorders.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2025.09.006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.09.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The microbiota extends the reproductive lifespan of mice by safeguarding the ovarian reserve
Infertility affects one in six people, but the underlying mechanisms remain unclear. We show that the microbiota governs female reproductive longevity in mice. Germ-free mice have fewer primordial follicles, increased atresia, and ovarian fibrosis, leading to smaller litters, fewer offspring, and a shorter reproductive lifespan. Germ-free mice are born with a similar ovarian reserve but display excessive activation, impaired progression, and increased atresia during post-natal development. Microbiome colonization during a critical post-natal window rescues premature ovarian reserve loss by normalizing follicle kinetics and gene expression patterns. These changes parallel increased short-chain fatty acids (SCFAs), and SCFA administration mitigates ovarian dysfunction in germ-free mice. Similar oocyte dysfunction occurred in conventionally raised mice fed a high-fat diet, but additional dietary fiber helped preserve oocyte quality and embryo competence. Thus, host-microbe interactions shape female fertility, and microbiota-targeted interventions may offer strategies to address reproductive disorders.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.