Plasma Chemistry and Plasma Processing最新文献

筛选
英文 中文
Thermal Plasma-Induced High Temperature Insulation Gas Generation for Dielectric Property Measurement above 3000 K 用于 3000 K 以上介电性能测量的热等离子体诱导高温绝缘气体生成技术
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-03-04 DOI: 10.1007/s11090-025-10553-4
Koya Ishinokoshi, Rio Okano, Yasunori Tanaka, Tatsuo Ishijima, Yusuke Nakano
{"title":"Thermal Plasma-Induced High Temperature Insulation Gas Generation for Dielectric Property Measurement above 3000 K","authors":"Koya Ishinokoshi,&nbsp;Rio Okano,&nbsp;Yasunori Tanaka,&nbsp;Tatsuo Ishijima,&nbsp;Yusuke Nakano","doi":"10.1007/s11090-025-10553-4","DOIUrl":"10.1007/s11090-025-10553-4","url":null,"abstract":"<div><p>A novel method for generating high-temperature gas using a tandem-type inductively coupled thermal plasma (Tandem-ICTP), composed of two vertically arranged coils, was proposed to experimentally evaluate the dielectric properties of hot gases. The dielectric properties of high-temperature insulation gases are critical for determining the success or failure of current interruption in gas circuit breakers (GCBs). In this study, we focused on the detailed investigation of the high-temperature gas field generated by Tandem-ICTP. The temperature of <span>(hbox {CO}_2)</span> gas, heated by varying the lower-coil input power in the Tandem-ICTP system, was estimated using spectroscopic measurements at the electrode position, applying the Boltzmann plot method. Additionally, an electromagnetic thermofluid simulation was conducted to support the experimentally measured temperatures and to estimate the mole concentration of <span>(hbox {CO}_2)</span> gas between the electrodes. The results revealed that the temperature of the <span>(hbox {CO}_2)</span> gas could exceed 3800 K using the Tandem-ICTP and could be adjusted by approximately 2600 K by modifying the input power of lower-coil. Furthermore, the mole concentration of high-temperature <span>(hbox {CO}_2)</span> gas between the electrodes was found to be approximately 40<span>(%)</span>, as determined by numerical simulation. This method demonstrates that a dielectric test can be conducted in the wide range of high-temperature gas fields above 3000 K by controlling parameters such as the input power of lower-coil in the Tandem-ICTP system.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"951 - 970"},"PeriodicalIF":2.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irradiation With Cold Atmospheric Direct Plasma: An Innovative Approach to Treating Murine Cutaneous Wounds 冷大气直接等离子体辐照:治疗小鼠皮肤伤口的创新方法
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-03-01 DOI: 10.1007/s11090-025-10555-2
Madyan Ahmed Khalaf, Baida M. Ahmed, Sahar A. H. Al-Sharqi
{"title":"Irradiation With Cold Atmospheric Direct Plasma: An Innovative Approach to Treating Murine Cutaneous Wounds","authors":"Madyan Ahmed Khalaf,&nbsp;Baida M. Ahmed,&nbsp;Sahar A. H. Al-Sharqi","doi":"10.1007/s11090-025-10555-2","DOIUrl":"10.1007/s11090-025-10555-2","url":null,"abstract":"<div><p>Cold atmospheric direct plasma (CADP), an ionized gas at ambient temperature, represents a promising approach to enhancing tissue regeneration. A laboratory-based study was conducted to investigate the effects of medical CADP on the reparative potential of full-thickness acute skin wounds in murine models. For the in vivo investigations, two full-thickness dermal injuries were induced in each murine subject, each with a diameter of approximately 8 mm (<i>n</i> = 20). We employed a floating electrode within a CADP system that generates atmospheric pressure air plasma, characterized by a plasma temperature ranging from 36 to 38 °C. The dermal wounds received three plasma treatments, administered every two days, with irradiation durations of 5, 15, and 25 s. These wounds were subsequently evaluated at intervals of 2, 4, 6, 8, and 11 days post-wounding through histological examination and concentration analysis of growth factors. On the eleventh day, the wound healing rates were recorded at 34.80% for the control group, while the plasma-treated groups achieved rates of 56.62%, 84.97%, and 97.82%, respectively. Histological examination revealed that plasma-treatment promotes the development of epidermal keratin and granular strata, along with the formation of hair follicles and sebaceous glands. Concentration analysis of growth factors indicates increased levels of these factors alongside a reduction in white blood cell counts. The CADP therapeutic intervention has significantly enhanced the healing efficacy of acute dermatological lesions without any noticeable adverse effects or the simultaneous activation of pro-inflammatory signaling pathways. These findings highlight the advantages of employing plasma applications for wound management in clinical settings.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"753 - 771"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thanks to Reviewers in 2024 感谢2024年的评论者
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-26 DOI: 10.1007/s11090-025-10546-3
{"title":"Thanks to Reviewers in 2024","authors":"","doi":"10.1007/s11090-025-10546-3","DOIUrl":"10.1007/s11090-025-10546-3","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"659 - 660"},"PeriodicalIF":2.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-Assisted Non-Oxidative Coupling of Methane: Effects of Bead Size Distribution and Operating Pressure in a Co-axial DBD 等离子体辅助甲烷的非氧化偶联:同轴 DBD 中微珠粒度分布和工作压力的影响
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-23 DOI: 10.1007/s11090-025-10548-1
T. S. Larsen, J. A. Andersen, J. M. Christensen, A. Fateev, M. Østberg, E. Morais, A. Bogaerts, A. D. Jensen
{"title":"Plasma-Assisted Non-Oxidative Coupling of Methane: Effects of Bead Size Distribution and Operating Pressure in a Co-axial DBD","authors":"T. S. Larsen,&nbsp;J. A. Andersen,&nbsp;J. M. Christensen,&nbsp;A. Fateev,&nbsp;M. Østberg,&nbsp;E. Morais,&nbsp;A. Bogaerts,&nbsp;A. D. Jensen","doi":"10.1007/s11090-025-10548-1","DOIUrl":"10.1007/s11090-025-10548-1","url":null,"abstract":"<div><p>A co-axial packed-bed DBD reactor was used to conduct plasma-assisted non-oxidative coupling of methane (NOCM) utilizing glass beads as packing material at a fixed plasma power of 30 W. The influence on NOCM of five different bead size distributions (2000–5000 µm, 900–1100 µm, 425–600 µm, 212–300 µm, 150–212 µm) and operating pressure (1.2 bar, 1.7 bar) was investigated. The observed products consist of a mixture of saturated and unsaturated C<sub>2</sub>–C<sub>5</sub> hydrocarbons. The conversion of methane decreased from 8.5 to 3.7% with decreasing bead size, while the selectivity towards unsaturated C<sub>2</sub> compounds increased from 16 to 50% with decreasing bead size. These reactor performance variations are associated with the transitional plasma dynamics and degree of partial discharging, as determined by characterization of non-ideal charge–voltage plots for the five tested glass bead sizes.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"843 - 871"},"PeriodicalIF":2.6,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-025-10548-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Therapeutic Potential of Soft Plasma Jet and Nitric-Oxide Enriched Plasma-Activated Water (NO-PAW) on Oral Cancer YD-10B Cells: A Comprehensive Investigation of Direct and Indirect Treatments 揭示软等离子体射流和一氧化氮富集等离子体活化水(NO-PAW)对口腔癌YD-10B细胞的治疗潜力:直接和间接治疗的综合研究
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-19 DOI: 10.1007/s11090-025-10539-2
Juie Nahushkumar Rana, Sohail Mumtaz, Ihn Han, Eun Ha Choi
{"title":"Unveiling the Therapeutic Potential of Soft Plasma Jet and Nitric-Oxide Enriched Plasma-Activated Water (NO-PAW) on Oral Cancer YD-10B Cells: A Comprehensive Investigation of Direct and Indirect Treatments","authors":"Juie Nahushkumar Rana,&nbsp;Sohail Mumtaz,&nbsp;Ihn Han,&nbsp;Eun Ha Choi","doi":"10.1007/s11090-025-10539-2","DOIUrl":"10.1007/s11090-025-10539-2","url":null,"abstract":"<div><p>Oral cancer presents significant challenges with available treatment options; therefore, innovative treatment strategies are urgently needed. Nonthermal atmospheric pressure plasma (NAPP) is well known to be effective against various cancers. However, the effect and underlying mechanism of NAPP on YD-10B oral cancer cells are widely unknown. We have selected the oral cancer YD-10B cell line because the effect of NAPP on this particular cell line has not been investigated before. This study explored the therapeutic potential of NAPP via both direct and indirect NAPP treatments and their underlying mechanism on YD-10B cells for the first time. The viability of the oral normal HGF cells remained unchanged while significantly decreased in YD-10B cells using direct and indirect NAPP treatments. Direct treatment significantly increased intracellular reactive oxygen and nitrogen species (ROS/RNS), while indirect treatment mainly elevated RNS levels, with a modest but significant ROS increase in the NO-PAW15. The DNA damage and apoptosis markers are significantly upregulated in both direct and indirect treatments in YD-10B cells, though the expression levels are different. The western blot analysis confirms that both NAPP treatments (direct/indirect) are effectively inducing apoptosis in YD-10B cells. Furthermore, the utilization of N-Acetyl Cysteine and cPTIO as inhibitors confirms that the ROS/RNS are mainly responsible for inducing DNA damage and promoting apoptosis. Interestingly, both NAPP treatments are effective and follow the same molecular pathways to induce apoptosis. This study presents a promising avenue for the development of novel and targeted oral cancer treatments, with molecular insights providing valuable guidance for future investigations in the field.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"725 - 752"},"PeriodicalIF":2.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Plasma Parameters of a Discharge Without Sidewalls Supported by a Hollow Cathode 空心阴极支持的无侧壁放电的局部等离子体参数
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-19 DOI: 10.1007/s11090-025-10552-5
A. V. Bernatskiy, I. I. Draganov, N. A. Dyatko, I. V. Kochetov, V. V. Lagunov, V. N. Ochkin
{"title":"Local Plasma Parameters of a Discharge Without Sidewalls Supported by a Hollow Cathode","authors":"A. V. Bernatskiy,&nbsp;I. I. Draganov,&nbsp;N. A. Dyatko,&nbsp;I. V. Kochetov,&nbsp;V. V. Lagunov,&nbsp;V. N. Ochkin","doi":"10.1007/s11090-025-10552-5","DOIUrl":"10.1007/s11090-025-10552-5","url":null,"abstract":"<div><p>Using the Langmuir probe method, the spatial distributions of plasma parameters (plasma potential, electron number density and mean electron energy) in a discharge supported by a rectangular hollow cathode in helium at reduced pressure were studied. Measurements were carried out both inside the geometric aperture between the cathode and the anode, and outside it, including the region behind the anode. In the experiments, different anode designs were used: a rectangular metal grid and a grid with an adjacent solid metal or dielectric plate. It is shown that there is a noticeable number density of electrons in the region behind the anode, and the highest is observed in the case of a grid anode. Using the electric field component <i>E</i><sub><i>x</i></sub>(<i>х</i>), measured along the central axis X of the discharge gap for the case of grid anode, electron number density profile <i>N</i><sub><i>e</i></sub>(<i>x</i>) was calculated within the 1D Monte Carlo model. In the cathode-anode gap, the calculation results agree satisfactorily with the experimental data, but behind the anode, they are significantly lower than those measured. This difference is explained by the fact that under experimental conditions some of the electrons enter this region not by flying through the grid anode, but by flying around it.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"993 - 1009"},"PeriodicalIF":2.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modelling of Wood Gasification in Thermal Plasma Reactor II. Parametric Study for Currents 400–600 A 热等离子体反应器 II 中木材气化的数值建模。400-600 A 电流的参数研究
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-11 DOI: 10.1007/s11090-025-10543-6
Ivan Hirka, Jiří Jeništa, Oldřich Živný
{"title":"Numerical Modelling of Wood Gasification in Thermal Plasma Reactor II. Parametric Study for Currents 400–600 A","authors":"Ivan Hirka,&nbsp;Jiří Jeništa,&nbsp;Oldřich Živný","doi":"10.1007/s11090-025-10543-6","DOIUrl":"10.1007/s11090-025-10543-6","url":null,"abstract":"<div><p>Biomass gasification is a renewable technology for energy storage and hydrogen production. As a model example, in an earlier paper by Hirka et al. <i>Plasma Chem. Plasma Process</i>. (2017) 37:947–965, the gasification process of crushed wood was numerically modelled for three different mean diameters of the feed particles in a reactor using a water and argon generated DC-plasma torch at a current of 400 A and compared with experimental data of the composition at the reactor outlet. Good agreement with experiment was obtained, however, a more extensive parametric study is desirable for more general conclusions and optimization of operating conditions, which is the subject of this paper. Here, currents of 400, 500, and 600 A and multiple mean particle diameters ranging from 0.2 to 20 mm were studied. The resulting parameters were averaged over a sufficiently long iterative process. The resulting characteristics include temperature, velocity, current field distributions, molar fraction of synthesis gas, as well as discrete phase and particle trajectories. With increasing diameter from about 1 mm, the produced synthesis gas becomes concentrated in the center of the reactor chamber. The numerical model has been created using ANSYS Fluent software.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"919 - 950"},"PeriodicalIF":2.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-Induced Oxidation in Micro-Droplets: Quantifying H2O2 and OH Fluxes and Transport Limitations 等离子体诱导氧化微滴:定量H2O2和OH通量和运输限制
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-10 DOI: 10.1007/s11090-025-10549-0
Dongxuan Xu, Tanubhav K. Srivastava, Peter J. Bruggeman
{"title":"Plasma-Induced Oxidation in Micro-Droplets: Quantifying H2O2 and OH Fluxes and Transport Limitations","authors":"Dongxuan Xu,&nbsp;Tanubhav K. Srivastava,&nbsp;Peter J. Bruggeman","doi":"10.1007/s11090-025-10549-0","DOIUrl":"10.1007/s11090-025-10549-0","url":null,"abstract":"<div><p>The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H<sub>2</sub>O<sub>2</sub> production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H<sub>2</sub>O<sub>2</sub> is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"661 - 676"},"PeriodicalIF":2.6,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Needle-to-Liquid DC Discharge in Atmospheric Air: Electrical Characteristics and Impact on Potassium Halide Solutions 大气中针-液直流放电:电学特性及其对卤化钾溶液的影响
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-08 DOI: 10.1007/s11090-025-10547-2
L. Alomari, T. Orriere, C. Batiot-Dupeyrat, B. Teychene, E. Moreau
{"title":"Needle-to-Liquid DC Discharge in Atmospheric Air: Electrical Characteristics and Impact on Potassium Halide Solutions","authors":"L. Alomari,&nbsp;T. Orriere,&nbsp;C. Batiot-Dupeyrat,&nbsp;B. Teychene,&nbsp;E. Moreau","doi":"10.1007/s11090-025-10547-2","DOIUrl":"10.1007/s11090-025-10547-2","url":null,"abstract":"<div><p>This study investigates the electrical and chemical characteristics of a non-thermal atmospheric pressure DC plasma discharge in a needle-to-liquid configuration. A high-voltage (HV) needle is placed at 2 mm above the liquid surface, while the ground electrode is submerged in a potassium halide solution (potassium iodide (KI) or potassium chloride (KCl)). The reactive species in the liquid are estimated based on their reaction with KI, producing iodine (I<sub>2</sub>), either through direct titration of the plasma-treated KI or back titration of the plasma-treated KCl. Different discharge regimes are identified for each polarity: Trichel corona, unstable glow, and stable glow for negative polarity, and onset streamer, Hermstein glow corona, unstable glow, and stable glow for positive polarity. The presence of a liquid surface allows for higher voltage and current ranges without sparking and facilitates the establishment of a stable glow discharge, which is challenging in the case of a needle-to-plate configuration. The concentration of reactive species in the liquid is significantly lower in corona regimes compared to glow regimes, due to their lower power consumption, and the absence of direct contact between the plasma and the liquid. Moreover, the positive unstable glow is three times more efficient than the negative stable glow. One explanation is that the flow induced within the liquid during the positive unstable glow discharge enhances mixing of reactive species, preventing their saturation at the gas-liquid interface and improving their penetration into the liquid phase.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"677 - 705"},"PeriodicalIF":2.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of C2 + Hydrocarbons Via Plasma Processes 等离子体过程中C2 +碳氢化合物的价化
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-02-04 DOI: 10.1007/s11090-025-10542-7
Fabio Cameli, Georgios D. Stefanidis
{"title":"Valorization of C2 + Hydrocarbons Via Plasma Processes","authors":"Fabio Cameli,&nbsp;Georgios D. Stefanidis","doi":"10.1007/s11090-025-10542-7","DOIUrl":"10.1007/s11090-025-10542-7","url":null,"abstract":"<div><p>Hydrocarbon chains produced as byproduct of natural gas extraction and petrochemical processing can be valorised into syngas/H<sub>2</sub> and oxygenated fuels in a modular fashion through electrified modular plasma reactors. A plethora of configurations is available for light hydrocarbons reforming, with cold plasma assemblies emerging as the favourite option for both gas-phase and biphasic gas/liquid set-ups. Accurate control of dehydrogenation or partial oxidation reactions is provided by the implementation of a catalyst or through microreactor technology. On the contrary, warm plasma reactors are more suitable for reforming of gasoline/diesel chains, promoting higher throughput of H<sub>2</sub> per energy input. This reaction route does not necessarily require the deployment of a catalyst, hence making these systems more suitable for modular, decentralized processes. Online diagnostic techniques shed light on the reaction mechanism, where solid carbon deposits embody a low-value byproduct.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"639 - 658"},"PeriodicalIF":2.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-025-10542-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信