Unveiling the Therapeutic Potential of Soft Plasma Jet and Nitric-Oxide Enriched Plasma-Activated Water (NO-PAW) on Oral Cancer YD-10B Cells: A Comprehensive Investigation of Direct and Indirect Treatments
Juie Nahushkumar Rana, Sohail Mumtaz, Ihn Han, Eun Ha Choi
{"title":"Unveiling the Therapeutic Potential of Soft Plasma Jet and Nitric-Oxide Enriched Plasma-Activated Water (NO-PAW) on Oral Cancer YD-10B Cells: A Comprehensive Investigation of Direct and Indirect Treatments","authors":"Juie Nahushkumar Rana, Sohail Mumtaz, Ihn Han, Eun Ha Choi","doi":"10.1007/s11090-025-10539-2","DOIUrl":null,"url":null,"abstract":"<div><p>Oral cancer presents significant challenges with available treatment options; therefore, innovative treatment strategies are urgently needed. Nonthermal atmospheric pressure plasma (NAPP) is well known to be effective against various cancers. However, the effect and underlying mechanism of NAPP on YD-10B oral cancer cells are widely unknown. We have selected the oral cancer YD-10B cell line because the effect of NAPP on this particular cell line has not been investigated before. This study explored the therapeutic potential of NAPP via both direct and indirect NAPP treatments and their underlying mechanism on YD-10B cells for the first time. The viability of the oral normal HGF cells remained unchanged while significantly decreased in YD-10B cells using direct and indirect NAPP treatments. Direct treatment significantly increased intracellular reactive oxygen and nitrogen species (ROS/RNS), while indirect treatment mainly elevated RNS levels, with a modest but significant ROS increase in the NO-PAW15. The DNA damage and apoptosis markers are significantly upregulated in both direct and indirect treatments in YD-10B cells, though the expression levels are different. The western blot analysis confirms that both NAPP treatments (direct/indirect) are effectively inducing apoptosis in YD-10B cells. Furthermore, the utilization of N-Acetyl Cysteine and cPTIO as inhibitors confirms that the ROS/RNS are mainly responsible for inducing DNA damage and promoting apoptosis. Interestingly, both NAPP treatments are effective and follow the same molecular pathways to induce apoptosis. This study presents a promising avenue for the development of novel and targeted oral cancer treatments, with molecular insights providing valuable guidance for future investigations in the field.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"725 - 752"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10539-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cancer presents significant challenges with available treatment options; therefore, innovative treatment strategies are urgently needed. Nonthermal atmospheric pressure plasma (NAPP) is well known to be effective against various cancers. However, the effect and underlying mechanism of NAPP on YD-10B oral cancer cells are widely unknown. We have selected the oral cancer YD-10B cell line because the effect of NAPP on this particular cell line has not been investigated before. This study explored the therapeutic potential of NAPP via both direct and indirect NAPP treatments and their underlying mechanism on YD-10B cells for the first time. The viability of the oral normal HGF cells remained unchanged while significantly decreased in YD-10B cells using direct and indirect NAPP treatments. Direct treatment significantly increased intracellular reactive oxygen and nitrogen species (ROS/RNS), while indirect treatment mainly elevated RNS levels, with a modest but significant ROS increase in the NO-PAW15. The DNA damage and apoptosis markers are significantly upregulated in both direct and indirect treatments in YD-10B cells, though the expression levels are different. The western blot analysis confirms that both NAPP treatments (direct/indirect) are effectively inducing apoptosis in YD-10B cells. Furthermore, the utilization of N-Acetyl Cysteine and cPTIO as inhibitors confirms that the ROS/RNS are mainly responsible for inducing DNA damage and promoting apoptosis. Interestingly, both NAPP treatments are effective and follow the same molecular pathways to induce apoptosis. This study presents a promising avenue for the development of novel and targeted oral cancer treatments, with molecular insights providing valuable guidance for future investigations in the field.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.