Plasma Chemistry and Plasma Processing最新文献

筛选
英文 中文
Optimizing Dielectric Barrier Discharge Pencil Plasma Jet Treatment for Efficient Degradation of Organic Contaminants in Denim Industry Wastewater
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-01-22 DOI: 10.1007/s11090-025-10544-5
Vikas Rathore, Atul Nagar, Shruti Patel, Akanksha Pandey, Chirayu N. Patil, Jignasa Savjani, Shital Butani, Gopal Natesan, Heman Dave, Mudtorlep Nisoa, Sudhir Kumar Nema
{"title":"Optimizing Dielectric Barrier Discharge Pencil Plasma Jet Treatment for Efficient Degradation of Organic Contaminants in Denim Industry Wastewater","authors":"Vikas Rathore,&nbsp;Atul Nagar,&nbsp;Shruti Patel,&nbsp;Akanksha Pandey,&nbsp;Chirayu N. Patil,&nbsp;Jignasa Savjani,&nbsp;Shital Butani,&nbsp;Gopal Natesan,&nbsp;Heman Dave,&nbsp;Mudtorlep Nisoa,&nbsp;Sudhir Kumar Nema","doi":"10.1007/s11090-025-10544-5","DOIUrl":"10.1007/s11090-025-10544-5","url":null,"abstract":"<div><p>This study investigates the effectiveness of plasma treatment in degrading organic contaminants from denim industry wastewater using a dielectric barrier discharge (DBD) plasma jet. A 3-way full factorial design was applied to evaluate the influence of treatment time, power, and airflow rate on degradation efficiency. Initial tests on dyes such as crystal violet, congo red, methylene blue, and indigo confirmed the efficacy of the plasma jet, with degradation efficiencies of 96.3%, 86.3%, 93.4%, and 97.8%, respectively, within treatment times ranging from 8 to 60 min. For denim industry wastewater, plasma treatment resulted in notable reductions in chemical oxygen demand (COD), with 35.0% removal for virgin wastewater and 15.9% for industry-treated wastewater. Total organic carbon removal increased by 42.6% for virgin wastewater and 18.2% for industry-treated wastewater, indicating substantial mineralization. Toxicity analysis showed that plasma-treated wastewater supported freshwater algae growth, suggesting a non-toxic nature and enrichment with nitrogen-based nutrients. Regression analysis and optimization identified plasma treatment time and power as the key factors in maximizing COD removal. Under optimal conditions, COD removal reached 97.65% for virgin wastewater and 98.1% for industry-treated wastewater. In conclusion, plasma treatment offers an effective and sustainable method for wastewater management in the textile industry, ensuring significant pollutant degradation, improved water quality, and a non-toxic, nutrient-rich effluent suitable for environmental applications.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"569 - 595"},"PeriodicalIF":2.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of The Plasma Reaction Behavior of a Coke Oven Gas with Trace Oxygen in a Coaxial DBD Reactor
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-01-20 DOI: 10.1007/s11090-025-10537-4
Tim Nitsche, Heiko Lohmann, Marcus Budt
{"title":"Investigation of The Plasma Reaction Behavior of a Coke Oven Gas with Trace Oxygen in a Coaxial DBD Reactor","authors":"Tim Nitsche,&nbsp;Heiko Lohmann,&nbsp;Marcus Budt","doi":"10.1007/s11090-025-10537-4","DOIUrl":"10.1007/s11090-025-10537-4","url":null,"abstract":"<div><p>The presented study shows experimental results with literature comparison for understanding of the oxygen removal in coke oven gas (COG) with plasma. The reaction of oxygen with the main COG components H<sub>2</sub>, CH<sub>4</sub>, and CO are investigated as well as the occurrence of potential side reactions as the splitting of CO<sub>2</sub> and CH<sub>4</sub>. Further potential side reactions in the COG mixture known from literature as hydrogenation reactions are discussed in contrast to the observations of the experiments.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"551 - 567"},"PeriodicalIF":2.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-025-10537-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Hydrocarbon Upgrade from n-Hexane, n-Octane, and n-Decane Using a Microsecond Pulsed Dielectric Barrier Discharge Non-thermal Plasma
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-01-09 DOI: 10.1007/s11090-024-10531-2
Saif Marji, Gabriela Baez Zaldivar, Pierre-Luc Girard-Lauriault
{"title":"Direct Hydrocarbon Upgrade from n-Hexane, n-Octane, and n-Decane Using a Microsecond Pulsed Dielectric Barrier Discharge Non-thermal Plasma","authors":"Saif Marji,&nbsp;Gabriela Baez Zaldivar,&nbsp;Pierre-Luc Girard-Lauriault","doi":"10.1007/s11090-024-10531-2","DOIUrl":"10.1007/s11090-024-10531-2","url":null,"abstract":"<div><p>Conventional chemical processing methods, employed for transforming hydrocarbon mixtures into more valuable forms, are known to consume high amounts of energy and produce a substantial amount of greenhouse gas emissions. This paper investigates an alternative approach employing non-thermal plasma, in a controlled temperature environment, to synthesize higher-order hydrocarbons. The method examined in this paper, has the potential to reduce energy requirements. Effects of temperature and hydrocarbon chain length on liquid and gas production efficiency are studied. A comparative analysis of the different hydrocarbons as reactants underscores the promising attributes of n-octane in this application. With the proposed reactor configuration, the highest average liquid production efficiency was found in n-octane at 20 °C. Organic compounds with carbon chain lengths as large as 20 carbons where successfully synthesized in the reactor configuration when using decane as the reactant. The observed trends alluded to different chemical reaction pathways being prevalent in different temperature conditions.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"535 - 550"},"PeriodicalIF":2.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143422984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and Optimization of Microwave-Induced Plasma for Enhanced Optical Emission Spectrometry
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2025-01-07 DOI: 10.1007/s11090-024-10536-x
H. Sadeghi, S. M. Sadat Kiai, Samaneh Fazelpour, S. P. Shirmardi, Shahriar Fathi
{"title":"Characterization and Optimization of Microwave-Induced Plasma for Enhanced Optical Emission Spectrometry","authors":"H. Sadeghi,&nbsp;S. M. Sadat Kiai,&nbsp;Samaneh Fazelpour,&nbsp;S. P. Shirmardi,&nbsp;Shahriar Fathi","doi":"10.1007/s11090-024-10536-x","DOIUrl":"10.1007/s11090-024-10536-x","url":null,"abstract":"<div><p>In this study, we present a novel pulsed microwave-induced plasma (MIP) source coupled with a glow discharge for optical emission spectrometry (MIP-OES), operating at 1000 W power and a frequency of 2.45 GHz. The MIP cavity consists of a stainless steel cylindrical waveguide connected to a circular resonator made of the same material, joined through a dielectric quartz disc. The output of the MIP cavity is linked to a closed glow discharge quartz tube and a mechanical pump. Numerical simulations were employed to optimize the structure and dimensions of the MIP cavity. The nozzle position of the cylindrical resonator's output was precisely adjusted to align with the maximum magnetic field, achieving the TM<sub>011</sub> mode, which results in a point plasma with high density. This configuration enables the cavity to produce a dense, warm plasma emission zone with a consistent emission rate around the circumference of the emitting source. The results demonstrate that the designed MIP source exhibits a significantly higher density and temperature compared to other sources with similar microwave parameters.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"619 - 637"},"PeriodicalIF":2.6,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study on Kr/Cl2 DBD Excilamp with Forward Reactions of Higher Excited KrCl
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2024-12-17 DOI: 10.1007/s11090-024-10535-y
Jiaqi Shi, Xueqing Yan, Wei Hua, Ying Chang, Guang Chang
{"title":"Numerical Study on Kr/Cl2 DBD Excilamp with Forward Reactions of Higher Excited KrCl","authors":"Jiaqi Shi,&nbsp;Xueqing Yan,&nbsp;Wei Hua,&nbsp;Ying Chang,&nbsp;Guang Chang","doi":"10.1007/s11090-024-10535-y","DOIUrl":"10.1007/s11090-024-10535-y","url":null,"abstract":"<div><p>We establish an excilamp model of the Kr/Cl<sub>2</sub> Dielectric Barrier Discharge (DBD) and prove the rationality of the model by the experiment. It includes forward reactions of higher excited KrCl, such as the harpooning reaction, quenching reaction, and discharge radiation. Based on the forward reaction system, we present an energy level diagram of the reaction path, which serves as a foundation for deeper comprehension of the impact of the activated KrCl and Kr<sub>2</sub>Cl chemical processes on the production and intensification of radiation at 222 nm. The microdischarge amplitude appears to be reduced due to the quenching equilibrium effect which is enhanced when the KrCl excited state converts to Kr<sub>2</sub>Cl and the discharge current appears to lag due to the figinternal field resistance. The density of excited KrCl particles decreases by 7.6% and power efficiency rises by 1.7% lift with every 20 mbar increment for a higher probability of inelastic collision. A greater proportion of chlorine increases the probability of a reaction with chlorine, inhibiting the creation of radiation particles and enhancing the quenching of radiation reactions. The action balances the numerical concentrations of Kr and Cl and strongly suppresses the excited Kr<sub>2</sub>Cl particles. The simulation demonstrates that there are negligible disturbance on power supply efficiency as the proportion of 325 nm radiation in the spectrum decreases from 6 to 1%. The change of discharge gap will cause the change of discharge mode, and higher discharge gap will cause more intense glow discharge.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"515 - 534"},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture 非热等离子体技术及其对等离子农业粮食作物种子类型的潜在影响
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2024-12-16 DOI: 10.1007/s11090-024-10534-z
Naeem Ahmed, Ling Xin Yong, Jason Hsiao Chun Yang, Kim S. Siow
{"title":"Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture","authors":"Naeem Ahmed,&nbsp;Ling Xin Yong,&nbsp;Jason Hsiao Chun Yang,&nbsp;Kim S. Siow","doi":"10.1007/s11090-024-10534-z","DOIUrl":"10.1007/s11090-024-10534-z","url":null,"abstract":"<div><p>Non-thermal plasma (NTP) is explored as a sustainable technology to treat and enhance seed germination and growth of major food crops to address food security issues worldwide. This review would provide an overview on the latest advancement of NTP applications for food crop seeds, considering the different food crop groups, and summarizes the mechanism of how NTP improves germination and growth. Results vary based on seed type, plasma setup, and source, such as direct glow plasma or plasma-activated water (PAW). In direct glow plasma, reactive species induce morphological changes by bombarding seed surfaces with ions and radicals. PAW, on the other hand, promotes seed germination through reactive oxygen and nitrogen species (RONS) present in the water. Regardless of treatment sources, RONS ions also play a crucial role in modifying seed morphology, activating antioxidant enzymes, and influencing hormonal pathways to stimulate growth processes while suppressing inhibitory signals. NTP treatment shows promising potential in plasma agriculture, but excessive exposure may adversely affect plant growth. Additionally, NTP induces epigenetic changes, such as DNA methylation, which regulates stress-related genes, further supporting seed performance. Despite these advancements, critical knowledge gaps remain, including the need for standardized plasma energy evaluations, long-term yield impact, and safety validations for food produced from plasma-treated seeds. Future research must address these aspects to ensure the widespread, sustainable application of NTP technology in agriculture.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"421 - 462"},"PeriodicalIF":2.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined Characterization of a Plasma Jet: FTIR, Chemical Surveys and Antibacterial Effect
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2024-12-07 DOI: 10.1007/s11090-024-10532-1
Leonardo Zampieri, Lorenzo Ibba, Rita Agus, Ivo Furno, Matteo Zuin, Gianluca De Masi, Luigi Cordaro, Roberto Cavazzana, Emilio Martines
{"title":"Combined Characterization of a Plasma Jet: FTIR, Chemical Surveys and Antibacterial Effect","authors":"Leonardo Zampieri,&nbsp;Lorenzo Ibba,&nbsp;Rita Agus,&nbsp;Ivo Furno,&nbsp;Matteo Zuin,&nbsp;Gianluca De Masi,&nbsp;Luigi Cordaro,&nbsp;Roberto Cavazzana,&nbsp;Emilio Martines","doi":"10.1007/s11090-024-10532-1","DOIUrl":"10.1007/s11090-024-10532-1","url":null,"abstract":"<div><p>Atmospheric pressure low power plasma jets operating in noble gases are a widespread tool in plasma medicine studies. We present experimental results obtained in one such device, which combine physical, chemical and biological measurements to assess the effectiveness in production of reactive oxygen and nitrogen species and in inactivation of <i>Escherichia coli</i>, a model microorganism. We proved that it exists a threshold effect on the source control parameters, defining a voltage level which has to be exceeded in order to obtain effective bacteria inactivation. This result is discussed in terms of the reactive species produced within the plasma and in treated water.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"485 - 501"},"PeriodicalIF":2.6,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging 以纹影成像为基准的气体转化表面阻挡放电中离子风的等离子体和流动模拟
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2024-12-03 DOI: 10.1007/s11090-024-10533-0
S. Mohsenimehr, S. Wilczek, T. Mussenbrock, A. von Keudell
{"title":"Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging","authors":"S. Mohsenimehr,&nbsp;S. Wilczek,&nbsp;T. Mussenbrock,&nbsp;A. von Keudell","doi":"10.1007/s11090-024-10533-0","DOIUrl":"10.1007/s11090-024-10533-0","url":null,"abstract":"<div><p>Surface dielectric barrier discharges (sDBD) are efficient and scalable plasma sources for plasma-based gas conversion. One prominent feature of an sDBD is the generation of an ion wind, which exerts a force on the neutrals, thus leading to an efficient mixing of plasma and a passing gas stream. This becomes apparent by the creation of upstream and downstream vortices in the vicinity of the plasma. In this study, these vortices are generated by high voltage burst pulses consisting of two half cycles of an almost sinusoidal voltage shape. The vortices are monitored by Schlieren imaging diagnostic to benchmark and connect two simulations of the sDBD: a plasma model simulating a streamer for 25 ns starting from the electrode and propagating along a dielectric surface followed by a decay. The streamer is the source of electrical charges accelerated as ion wind by the applied electric field from the sDBD power supply. A second flow simulation models this ion wind as a time-averaged thrust acting on the passing gas stream. The conversion of the time-resolved forces from the nanosecond plasma simulation into the steady state thrust in the flow simulation indicates that the force from the plasma lasts much longer than the actual streamer propagation phase. This is explained by the fact that the charges in the streamer channel remain present for almost 100 ns, and the voltage from the power supply lasts for a few microseconds being applied to the electrode so that ions in the streamer channel are still accelerated even after a streamer stops to propagate after a few ns. The thrust generated during the streamer phase, including the relaxation phase, agrees well with predictions from flow simulation. Additionally, properly converting the time-resolved forces from the plasma simulation into a time-averaged thrust for the flow simulation yields exactly the synthetic Schlieren images as measured in the experiments.\u0000</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"85 - 112"},"PeriodicalIF":2.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-024-10533-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces 分离等离子体以研究氢等离子体对铯表面功函数的影响
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2024-12-02 DOI: 10.1007/s11090-024-10529-w
A. Heiler, R. Friedl, U. Fantz
{"title":"Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces","authors":"A. Heiler,&nbsp;R. Friedl,&nbsp;U. Fantz","doi":"10.1007/s11090-024-10529-w","DOIUrl":"10.1007/s11090-024-10529-w","url":null,"abstract":"<div><p>In negative hydrogen ion sources in situ adsorption of Cs is typically used to generate low work function converter surfaces. The achievement of a temporally stable low work function coating is, however, challenging due to the hydrogen plasma interaction with the surface. Particularly in ion sources for neutral beam injection systems for fusion with pulse durations of minutes to hours temporal instabilities are a major issue and limit the source performance. To clarify the influence of the hydrogen plasma on the converter surface, investigations are performed at an experiment equipped with an absolute work function diagnostic based on the photoelectric effect. Caesiated surfaces are exposed to the full plasma impact by the generation of plasmas in front of the surface as well as to selected plasma species (H atoms, positive ions and VUV/UV photons) from an external plasma source to identify driving mechanisms that lead to surface changes. Depending on the exposure time and initial surface condition, the plasma strongly affects the surface in terms of work function and quantum efficiency (QE). For degraded Cs layers (work function <span>(ge 3)</span> eV) a favorable increase in QE and reduction in work function can be achieved, while for Cs layers with an ultra-low work function of <span>(1.2-1.3)</span> eV the opposite is true. It is found that each plasma species can influence the Cs layers and that VUV photons lead to a work function increase of ultra-low work function layers. For sufficiently high VUV fluences a severe work function increase by 0.5 eV is given, highlighting the relevance of photochemical processes in the plasma-surface interaction and demonstrating that ultra-low work function layers are not stable in a hydrogen plasma environment.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"1 - 20"},"PeriodicalIF":2.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-024-10529-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats 瞬态火花血浆处理的l -半胱氨酸降低ccl4诱导的大鼠肝毒性
IF 2.6 3区 物理与天体物理
Plasma Chemistry and Plasma Processing Pub Date : 2024-11-15 DOI: 10.1007/s11090-024-10527-y
Masume Farhadi, Farshad Sohbatzadeh, Akbar Hajizadeh Moghaddam, Yasaman Firouzjaei
{"title":"Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats","authors":"Masume Farhadi,&nbsp;Farshad Sohbatzadeh,&nbsp;Akbar Hajizadeh Moghaddam,&nbsp;Yasaman Firouzjaei","doi":"10.1007/s11090-024-10527-y","DOIUrl":"10.1007/s11090-024-10527-y","url":null,"abstract":"<div><p>Cold plasmas have been considered an effective method in numerous scientific fields. One excellent target for plasma treatment is amino acids. Transient spark plasma discharge (TSP) is very useful in changing the chemical structures of biological systems due to its high electron density. TSP discharges as DC-driven self-pulsing discharges allow ionization and effective chemical processes to be performed easily. This type of plasma discharge consists of numerous streamers with a high electric field that can be transferred into short spark current pulses. In this study, we utilized a pin-to-ring TSP with a fixed voltage and frequency of ~ 5 kV and 220 Hz, respectively. The present study was conducted to estimate the synergetic effect of a TSP device and cysteine (Cys) in stopping hepatotoxicity. The interaction of Ar plasma with Cys solution was investigated by LCMS/MS, revealing that many new biochemical products with different molecular weights were produced under plasma treatment. Glutathione (GSH) level and DPPH scavenging activity were performed. Biochemical markers and histopathological analysis were also evaluated. Results revealed that by increased levels of GSH and anti-oxidant activity, PTC solution can preserve as opposed to injuries caused by CCl<sub>4</sub> injection to a greater extent than untreated Cys even at a low dose of amino acid. The ALP, ALT, and AST activity levels were closer to the normal level when PTC was received than Cys. After receiving PTC, more positive liver and kidney tissue changes were observed in the CCl<sub>4</sub> group. It also had a great impact on oxidative antioxidant parameters. Therefore, PTC as an effective drug has shown a positive effect in inhibiting hepatotoxicity because it contains various biomolecules under the influence of the plasma-produced reactive species.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"279 - 296"},"PeriodicalIF":2.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信