以纹影成像为基准的气体转化表面阻挡放电中离子风的等离子体和流动模拟

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
S. Mohsenimehr, S. Wilczek, T. Mussenbrock, A. von Keudell
{"title":"以纹影成像为基准的气体转化表面阻挡放电中离子风的等离子体和流动模拟","authors":"S. Mohsenimehr,&nbsp;S. Wilczek,&nbsp;T. Mussenbrock,&nbsp;A. von Keudell","doi":"10.1007/s11090-024-10533-0","DOIUrl":null,"url":null,"abstract":"<div><p>Surface dielectric barrier discharges (sDBD) are efficient and scalable plasma sources for plasma-based gas conversion. One prominent feature of an sDBD is the generation of an ion wind, which exerts a force on the neutrals, thus leading to an efficient mixing of plasma and a passing gas stream. This becomes apparent by the creation of upstream and downstream vortices in the vicinity of the plasma. In this study, these vortices are generated by high voltage burst pulses consisting of two half cycles of an almost sinusoidal voltage shape. The vortices are monitored by Schlieren imaging diagnostic to benchmark and connect two simulations of the sDBD: a plasma model simulating a streamer for 25 ns starting from the electrode and propagating along a dielectric surface followed by a decay. The streamer is the source of electrical charges accelerated as ion wind by the applied electric field from the sDBD power supply. A second flow simulation models this ion wind as a time-averaged thrust acting on the passing gas stream. The conversion of the time-resolved forces from the nanosecond plasma simulation into the steady state thrust in the flow simulation indicates that the force from the plasma lasts much longer than the actual streamer propagation phase. This is explained by the fact that the charges in the streamer channel remain present for almost 100 ns, and the voltage from the power supply lasts for a few microseconds being applied to the electrode so that ions in the streamer channel are still accelerated even after a streamer stops to propagate after a few ns. The thrust generated during the streamer phase, including the relaxation phase, agrees well with predictions from flow simulation. Additionally, properly converting the time-resolved forces from the plasma simulation into a time-averaged thrust for the flow simulation yields exactly the synthetic Schlieren images as measured in the experiments.\n</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"85 - 112"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-024-10533-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging\",\"authors\":\"S. Mohsenimehr,&nbsp;S. Wilczek,&nbsp;T. Mussenbrock,&nbsp;A. von Keudell\",\"doi\":\"10.1007/s11090-024-10533-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface dielectric barrier discharges (sDBD) are efficient and scalable plasma sources for plasma-based gas conversion. One prominent feature of an sDBD is the generation of an ion wind, which exerts a force on the neutrals, thus leading to an efficient mixing of plasma and a passing gas stream. This becomes apparent by the creation of upstream and downstream vortices in the vicinity of the plasma. In this study, these vortices are generated by high voltage burst pulses consisting of two half cycles of an almost sinusoidal voltage shape. The vortices are monitored by Schlieren imaging diagnostic to benchmark and connect two simulations of the sDBD: a plasma model simulating a streamer for 25 ns starting from the electrode and propagating along a dielectric surface followed by a decay. The streamer is the source of electrical charges accelerated as ion wind by the applied electric field from the sDBD power supply. A second flow simulation models this ion wind as a time-averaged thrust acting on the passing gas stream. The conversion of the time-resolved forces from the nanosecond plasma simulation into the steady state thrust in the flow simulation indicates that the force from the plasma lasts much longer than the actual streamer propagation phase. This is explained by the fact that the charges in the streamer channel remain present for almost 100 ns, and the voltage from the power supply lasts for a few microseconds being applied to the electrode so that ions in the streamer channel are still accelerated even after a streamer stops to propagate after a few ns. The thrust generated during the streamer phase, including the relaxation phase, agrees well with predictions from flow simulation. Additionally, properly converting the time-resolved forces from the plasma simulation into a time-averaged thrust for the flow simulation yields exactly the synthetic Schlieren images as measured in the experiments.\\n</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 1\",\"pages\":\"85 - 112\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11090-024-10533-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10533-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10533-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

表面介质阻挡放电(sDBD)是一种高效、可扩展的等离子体源,用于等离子体基气体转换。sDBD的一个突出特征是产生离子风,它对中性粒子施加一个力,从而导致等离子体和经过的气流的有效混合。这一点在等离子体附近的上游和下游漩涡的产生中变得明显。在这项研究中,这些涡流是由两个几乎正弦电压形状的半周期的高压突发脉冲产生的。通过纹影成像诊断来监测涡旋,并连接sDBD的两个模拟:一个等离子体模型模拟从电极开始沿介质表面传播的25 ns的流光,然后是衰减。飘带是电荷的来源,由sDBD电源的外加电场作为离子风加速。第二种流动模拟将这种离子风模拟为作用于通过气流的时间平均推力。将纳秒等离子体模拟的时间分辨力转化为流动模拟中的稳态推力,表明等离子体力的持续时间要比实际流传播阶段长得多。这是由这样一个事实来解释的,即流光通道中的电荷保持存在近100纳秒,并且来自电源的电压持续几微秒,被施加到电极上,因此即使流光在几纳秒后停止传播,流光通道中的离子仍然加速。流线阶段(包括松弛阶段)产生的推力与流动模拟的预测结果吻合较好。此外,适当地将等离子体模拟的时间分辨力转换为流动模拟的时间平均推力,可以得到实验中测量的合成纹影图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging

Surface dielectric barrier discharges (sDBD) are efficient and scalable plasma sources for plasma-based gas conversion. One prominent feature of an sDBD is the generation of an ion wind, which exerts a force on the neutrals, thus leading to an efficient mixing of plasma and a passing gas stream. This becomes apparent by the creation of upstream and downstream vortices in the vicinity of the plasma. In this study, these vortices are generated by high voltage burst pulses consisting of two half cycles of an almost sinusoidal voltage shape. The vortices are monitored by Schlieren imaging diagnostic to benchmark and connect two simulations of the sDBD: a plasma model simulating a streamer for 25 ns starting from the electrode and propagating along a dielectric surface followed by a decay. The streamer is the source of electrical charges accelerated as ion wind by the applied electric field from the sDBD power supply. A second flow simulation models this ion wind as a time-averaged thrust acting on the passing gas stream. The conversion of the time-resolved forces from the nanosecond plasma simulation into the steady state thrust in the flow simulation indicates that the force from the plasma lasts much longer than the actual streamer propagation phase. This is explained by the fact that the charges in the streamer channel remain present for almost 100 ns, and the voltage from the power supply lasts for a few microseconds being applied to the electrode so that ions in the streamer channel are still accelerated even after a streamer stops to propagate after a few ns. The thrust generated during the streamer phase, including the relaxation phase, agrees well with predictions from flow simulation. Additionally, properly converting the time-resolved forces from the plasma simulation into a time-averaged thrust for the flow simulation yields exactly the synthetic Schlieren images as measured in the experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信