Numerical Study on Kr/Cl2 DBD Excilamp with Forward Reactions of Higher Excited KrCl

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Jiaqi Shi, Xueqing Yan, Wei Hua, Ying Chang, Guang Chang
{"title":"Numerical Study on Kr/Cl2 DBD Excilamp with Forward Reactions of Higher Excited KrCl","authors":"Jiaqi Shi,&nbsp;Xueqing Yan,&nbsp;Wei Hua,&nbsp;Ying Chang,&nbsp;Guang Chang","doi":"10.1007/s11090-024-10535-y","DOIUrl":null,"url":null,"abstract":"<div><p>We establish an excilamp model of the Kr/Cl<sub>2</sub> Dielectric Barrier Discharge (DBD) and prove the rationality of the model by the experiment. It includes forward reactions of higher excited KrCl, such as the harpooning reaction, quenching reaction, and discharge radiation. Based on the forward reaction system, we present an energy level diagram of the reaction path, which serves as a foundation for deeper comprehension of the impact of the activated KrCl and Kr<sub>2</sub>Cl chemical processes on the production and intensification of radiation at 222 nm. The microdischarge amplitude appears to be reduced due to the quenching equilibrium effect which is enhanced when the KrCl excited state converts to Kr<sub>2</sub>Cl and the discharge current appears to lag due to the figinternal field resistance. The density of excited KrCl particles decreases by 7.6% and power efficiency rises by 1.7% lift with every 20 mbar increment for a higher probability of inelastic collision. A greater proportion of chlorine increases the probability of a reaction with chlorine, inhibiting the creation of radiation particles and enhancing the quenching of radiation reactions. The action balances the numerical concentrations of Kr and Cl and strongly suppresses the excited Kr<sub>2</sub>Cl particles. The simulation demonstrates that there are negligible disturbance on power supply efficiency as the proportion of 325 nm radiation in the spectrum decreases from 6 to 1%. The change of discharge gap will cause the change of discharge mode, and higher discharge gap will cause more intense glow discharge.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 2","pages":"515 - 534"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10535-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We establish an excilamp model of the Kr/Cl2 Dielectric Barrier Discharge (DBD) and prove the rationality of the model by the experiment. It includes forward reactions of higher excited KrCl, such as the harpooning reaction, quenching reaction, and discharge radiation. Based on the forward reaction system, we present an energy level diagram of the reaction path, which serves as a foundation for deeper comprehension of the impact of the activated KrCl and Kr2Cl chemical processes on the production and intensification of radiation at 222 nm. The microdischarge amplitude appears to be reduced due to the quenching equilibrium effect which is enhanced when the KrCl excited state converts to Kr2Cl and the discharge current appears to lag due to the figinternal field resistance. The density of excited KrCl particles decreases by 7.6% and power efficiency rises by 1.7% lift with every 20 mbar increment for a higher probability of inelastic collision. A greater proportion of chlorine increases the probability of a reaction with chlorine, inhibiting the creation of radiation particles and enhancing the quenching of radiation reactions. The action balances the numerical concentrations of Kr and Cl and strongly suppresses the excited Kr2Cl particles. The simulation demonstrates that there are negligible disturbance on power supply efficiency as the proportion of 325 nm radiation in the spectrum decreases from 6 to 1%. The change of discharge gap will cause the change of discharge mode, and higher discharge gap will cause more intense glow discharge.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信