等离子体诱导氧化微滴:定量H2O2和OH通量和运输限制

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Dongxuan Xu, Tanubhav K. Srivastava, Peter J. Bruggeman
{"title":"等离子体诱导氧化微滴:定量H2O2和OH通量和运输限制","authors":"Dongxuan Xu,&nbsp;Tanubhav K. Srivastava,&nbsp;Peter J. Bruggeman","doi":"10.1007/s11090-025-10549-0","DOIUrl":null,"url":null,"abstract":"<div><p>The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H<sub>2</sub>O<sub>2</sub> production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H<sub>2</sub>O<sub>2</sub> is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"661 - 676"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Induced Oxidation in Micro-Droplets: Quantifying H2O2 and OH Fluxes and Transport Limitations\",\"authors\":\"Dongxuan Xu,&nbsp;Tanubhav K. Srivastava,&nbsp;Peter J. Bruggeman\",\"doi\":\"10.1007/s11090-025-10549-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H<sub>2</sub>O<sub>2</sub> production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H<sub>2</sub>O<sub>2</sub> is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 3\",\"pages\":\"661 - 676\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10549-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10549-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

等离子体处理微液滴显著提高了气相物质向液相转移的反应性,使化合物的转化更有效。虽然通过气相密度测量获得了液滴的OH通量,但这些通量的测定涉及假设。在这项工作中,使用液相测量和1D反应扩散模型相结合的方法对液滴的H2O2产量和OH通量进行了量化。结果表明,H2O2主要在气相生成。为了量化OH通量,四种化合物(甲酸酯、抗坏血酸、亚铁氰化物、咖啡因)在不同的初始浓度下容易与OH反应。观察到两个输运限制趋势:(1)溶质扩散在较低初始浓度下限制转化,(2)气相物种通量在较高初始浓度下限制转化。后一极限允许OH通量测定。此外,还发现液相中的竞争性反应化学,如亚铁氰化物和咖啡因的情况,会导致反应的有限转化,并使OH通量的定量产生偏差。甲酸和抗坏血酸测量得到的OH通量与以前的OH气相测量结果非常一致,建议用于液相化学不受其他氧化物质(如臭氧)支配的等离子体-液体装置中的OH通量测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma-Induced Oxidation in Micro-Droplets: Quantifying H2O2 and OH Fluxes and Transport Limitations

The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H2O2 production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H2O2 is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信