Dongxuan Xu, Tanubhav K. Srivastava, Peter J. Bruggeman
{"title":"等离子体诱导氧化微滴:定量H2O2和OH通量和运输限制","authors":"Dongxuan Xu, Tanubhav K. Srivastava, Peter J. Bruggeman","doi":"10.1007/s11090-025-10549-0","DOIUrl":null,"url":null,"abstract":"<div><p>The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H<sub>2</sub>O<sub>2</sub> production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H<sub>2</sub>O<sub>2</sub> is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"661 - 676"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Induced Oxidation in Micro-Droplets: Quantifying H2O2 and OH Fluxes and Transport Limitations\",\"authors\":\"Dongxuan Xu, Tanubhav K. Srivastava, Peter J. Bruggeman\",\"doi\":\"10.1007/s11090-025-10549-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H<sub>2</sub>O<sub>2</sub> production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H<sub>2</sub>O<sub>2</sub> is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 3\",\"pages\":\"661 - 676\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10549-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10549-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Plasma-Induced Oxidation in Micro-Droplets: Quantifying H2O2 and OH Fluxes and Transport Limitations
The plasma treatment of micro-droplets significantly enhances the reactivity transfer of gas phase species into the liquid phase and enables more efficient conversion of chemical compounds. While OH fluxes to the droplet have been obtained using gas phase density measurements, the determination of these fluxes involved assumptions. In this work, the H2O2 production and OH flux to the droplet have been quantified using a combined approach of liquid phase measurement and 1D reaction-diffusion modeling. It was found that H2O2 is majorly produced in the gas phase. To quantify the OH flux, four compounds (formate, ascorbic acid, ferrocyanide, caffeine) that readily react with OH were treated at varying initial concentrations. Two transport limited trends were observed: (1) solute diffusion limited conversion for lower initial concentrations, and (2) gas phase species flux limited conversion for higher initial concentrations. The latter limit allows for the OH flux determination. Furthermore, it was found that competing reactive chemistry in the liquid phase, as in the cases of ferrocyanide and caffeine, can result in reaction limited conversion and skew the OH flux quantification. The OH flux derived from the formate and ascorbic acid measurements showed excellent agreement with previous OH gas phase measurements and are recommended to be used for OH flux measurements in plasma-liquid setups for which the liquid phase chemistry is not dominated by other oxidizing species such as ozone.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.