Madyan Ahmed Khalaf, Baida M. Ahmed, Sahar A. H. Al-Sharqi
{"title":"冷大气直接等离子体辐照:治疗小鼠皮肤伤口的创新方法","authors":"Madyan Ahmed Khalaf, Baida M. Ahmed, Sahar A. H. Al-Sharqi","doi":"10.1007/s11090-025-10555-2","DOIUrl":null,"url":null,"abstract":"<div><p>Cold atmospheric direct plasma (CADP), an ionized gas at ambient temperature, represents a promising approach to enhancing tissue regeneration. A laboratory-based study was conducted to investigate the effects of medical CADP on the reparative potential of full-thickness acute skin wounds in murine models. For the in vivo investigations, two full-thickness dermal injuries were induced in each murine subject, each with a diameter of approximately 8 mm (<i>n</i> = 20). We employed a floating electrode within a CADP system that generates atmospheric pressure air plasma, characterized by a plasma temperature ranging from 36 to 38 °C. The dermal wounds received three plasma treatments, administered every two days, with irradiation durations of 5, 15, and 25 s. These wounds were subsequently evaluated at intervals of 2, 4, 6, 8, and 11 days post-wounding through histological examination and concentration analysis of growth factors. On the eleventh day, the wound healing rates were recorded at 34.80% for the control group, while the plasma-treated groups achieved rates of 56.62%, 84.97%, and 97.82%, respectively. Histological examination revealed that plasma-treatment promotes the development of epidermal keratin and granular strata, along with the formation of hair follicles and sebaceous glands. Concentration analysis of growth factors indicates increased levels of these factors alongside a reduction in white blood cell counts. The CADP therapeutic intervention has significantly enhanced the healing efficacy of acute dermatological lesions without any noticeable adverse effects or the simultaneous activation of pro-inflammatory signaling pathways. These findings highlight the advantages of employing plasma applications for wound management in clinical settings.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"753 - 771"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irradiation With Cold Atmospheric Direct Plasma: An Innovative Approach to Treating Murine Cutaneous Wounds\",\"authors\":\"Madyan Ahmed Khalaf, Baida M. Ahmed, Sahar A. H. Al-Sharqi\",\"doi\":\"10.1007/s11090-025-10555-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cold atmospheric direct plasma (CADP), an ionized gas at ambient temperature, represents a promising approach to enhancing tissue regeneration. A laboratory-based study was conducted to investigate the effects of medical CADP on the reparative potential of full-thickness acute skin wounds in murine models. For the in vivo investigations, two full-thickness dermal injuries were induced in each murine subject, each with a diameter of approximately 8 mm (<i>n</i> = 20). We employed a floating electrode within a CADP system that generates atmospheric pressure air plasma, characterized by a plasma temperature ranging from 36 to 38 °C. The dermal wounds received three plasma treatments, administered every two days, with irradiation durations of 5, 15, and 25 s. These wounds were subsequently evaluated at intervals of 2, 4, 6, 8, and 11 days post-wounding through histological examination and concentration analysis of growth factors. On the eleventh day, the wound healing rates were recorded at 34.80% for the control group, while the plasma-treated groups achieved rates of 56.62%, 84.97%, and 97.82%, respectively. Histological examination revealed that plasma-treatment promotes the development of epidermal keratin and granular strata, along with the formation of hair follicles and sebaceous glands. Concentration analysis of growth factors indicates increased levels of these factors alongside a reduction in white blood cell counts. The CADP therapeutic intervention has significantly enhanced the healing efficacy of acute dermatological lesions without any noticeable adverse effects or the simultaneous activation of pro-inflammatory signaling pathways. These findings highlight the advantages of employing plasma applications for wound management in clinical settings.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 3\",\"pages\":\"753 - 771\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10555-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10555-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Irradiation With Cold Atmospheric Direct Plasma: An Innovative Approach to Treating Murine Cutaneous Wounds
Cold atmospheric direct plasma (CADP), an ionized gas at ambient temperature, represents a promising approach to enhancing tissue regeneration. A laboratory-based study was conducted to investigate the effects of medical CADP on the reparative potential of full-thickness acute skin wounds in murine models. For the in vivo investigations, two full-thickness dermal injuries were induced in each murine subject, each with a diameter of approximately 8 mm (n = 20). We employed a floating electrode within a CADP system that generates atmospheric pressure air plasma, characterized by a plasma temperature ranging from 36 to 38 °C. The dermal wounds received three plasma treatments, administered every two days, with irradiation durations of 5, 15, and 25 s. These wounds were subsequently evaluated at intervals of 2, 4, 6, 8, and 11 days post-wounding through histological examination and concentration analysis of growth factors. On the eleventh day, the wound healing rates were recorded at 34.80% for the control group, while the plasma-treated groups achieved rates of 56.62%, 84.97%, and 97.82%, respectively. Histological examination revealed that plasma-treatment promotes the development of epidermal keratin and granular strata, along with the formation of hair follicles and sebaceous glands. Concentration analysis of growth factors indicates increased levels of these factors alongside a reduction in white blood cell counts. The CADP therapeutic intervention has significantly enhanced the healing efficacy of acute dermatological lesions without any noticeable adverse effects or the simultaneous activation of pro-inflammatory signaling pathways. These findings highlight the advantages of employing plasma applications for wound management in clinical settings.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.