A. V. Bernatskiy, I. I. Draganov, N. A. Dyatko, I. V. Kochetov, V. V. Lagunov, V. N. Ochkin
{"title":"空心阴极支持的无侧壁放电的局部等离子体参数","authors":"A. V. Bernatskiy, I. I. Draganov, N. A. Dyatko, I. V. Kochetov, V. V. Lagunov, V. N. Ochkin","doi":"10.1007/s11090-025-10552-5","DOIUrl":null,"url":null,"abstract":"<div><p>Using the Langmuir probe method, the spatial distributions of plasma parameters (plasma potential, electron number density and mean electron energy) in a discharge supported by a rectangular hollow cathode in helium at reduced pressure were studied. Measurements were carried out both inside the geometric aperture between the cathode and the anode, and outside it, including the region behind the anode. In the experiments, different anode designs were used: a rectangular metal grid and a grid with an adjacent solid metal or dielectric plate. It is shown that there is a noticeable number density of electrons in the region behind the anode, and the highest is observed in the case of a grid anode. Using the electric field component <i>E</i><sub><i>x</i></sub>(<i>х</i>), measured along the central axis X of the discharge gap for the case of grid anode, electron number density profile <i>N</i><sub><i>e</i></sub>(<i>x</i>) was calculated within the 1D Monte Carlo model. In the cathode-anode gap, the calculation results agree satisfactorily with the experimental data, but behind the anode, they are significantly lower than those measured. This difference is explained by the fact that under experimental conditions some of the electrons enter this region not by flying through the grid anode, but by flying around it.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"993 - 1009"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Plasma Parameters of a Discharge Without Sidewalls Supported by a Hollow Cathode\",\"authors\":\"A. V. Bernatskiy, I. I. Draganov, N. A. Dyatko, I. V. Kochetov, V. V. Lagunov, V. N. Ochkin\",\"doi\":\"10.1007/s11090-025-10552-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the Langmuir probe method, the spatial distributions of plasma parameters (plasma potential, electron number density and mean electron energy) in a discharge supported by a rectangular hollow cathode in helium at reduced pressure were studied. Measurements were carried out both inside the geometric aperture between the cathode and the anode, and outside it, including the region behind the anode. In the experiments, different anode designs were used: a rectangular metal grid and a grid with an adjacent solid metal or dielectric plate. It is shown that there is a noticeable number density of electrons in the region behind the anode, and the highest is observed in the case of a grid anode. Using the electric field component <i>E</i><sub><i>x</i></sub>(<i>х</i>), measured along the central axis X of the discharge gap for the case of grid anode, electron number density profile <i>N</i><sub><i>e</i></sub>(<i>x</i>) was calculated within the 1D Monte Carlo model. In the cathode-anode gap, the calculation results agree satisfactorily with the experimental data, but behind the anode, they are significantly lower than those measured. This difference is explained by the fact that under experimental conditions some of the electrons enter this region not by flying through the grid anode, but by flying around it.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 3\",\"pages\":\"993 - 1009\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10552-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10552-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Local Plasma Parameters of a Discharge Without Sidewalls Supported by a Hollow Cathode
Using the Langmuir probe method, the spatial distributions of plasma parameters (plasma potential, electron number density and mean electron energy) in a discharge supported by a rectangular hollow cathode in helium at reduced pressure were studied. Measurements were carried out both inside the geometric aperture between the cathode and the anode, and outside it, including the region behind the anode. In the experiments, different anode designs were used: a rectangular metal grid and a grid with an adjacent solid metal or dielectric plate. It is shown that there is a noticeable number density of electrons in the region behind the anode, and the highest is observed in the case of a grid anode. Using the electric field component Ex(х), measured along the central axis X of the discharge gap for the case of grid anode, electron number density profile Ne(x) was calculated within the 1D Monte Carlo model. In the cathode-anode gap, the calculation results agree satisfactorily with the experimental data, but behind the anode, they are significantly lower than those measured. This difference is explained by the fact that under experimental conditions some of the electrons enter this region not by flying through the grid anode, but by flying around it.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.