{"title":"Performance enhancement of hollow fiber membrane contactors for CO2 absorption using MEA-based functionalized nanofluids","authors":"Miad Ahmari, Seyed Mojtaba Mirfendereski","doi":"10.1007/s10404-024-02760-w","DOIUrl":"10.1007/s10404-024-02760-w","url":null,"abstract":"<div><p>The performance of hollow fiber membrane contactor for CO<sub>2</sub> removal using MEA-based nanofluid was experimentally evaluated. Different types of nanoparticles, including Al<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, and functionalized MWCNT in this study. The influence of various operating conditions including gas and absorbent flow rates, absorbent concentration, and nanofluid characteristics on separation performance was thoroughly examined. The results showed that compared to conventional amine solvents, the nanofluid absorbents significantly enhance CO<sub>2</sub> absorption performance. In comparison to the base fluid, the mass transfer coefficient was raised by 320, 120, and 40% for 0.15 wt% MWCNT, Al<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>, respectively. The MWCNT showed much more compliance with amine solvents due to its carboxyl functional groups and higher surface area which make it more stable in a strong polar mixture. The study underscores the importance of stability, viscosity, and shear stress of nanofluids as key parameters affecting CO<sub>2</sub> absorption performance.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measurements of diffusion coefficient and kinetic diameter of acetone vapor via molecular tagging","authors":"Zongwei Zhang, Dominique Fratantonio, Christine Barrot Lattes, Marcos Rojas-Cardenas, Stéphane Colin","doi":"10.1007/s10404-024-02754-8","DOIUrl":"10.1007/s10404-024-02754-8","url":null,"abstract":"<div><p>The Molecular Tagging (MT) technique is a promising methodology for locally measuring velocity and temperature fields in rarefied gas flows. Recently, Molecular Tagging Velocimetry (MTV) has been successfully applied to gas flows in mini-channels in the continuum regime at high pressure and early slip-flow regime at lower pressure. As the operating pressure decreases, diffusion effects become more pronounced, and in MTV, they hinder the extraction of the correct velocity profile by simply dividing the displacement profile of the tagged molecular line by time of flight. To address this issue, a reconstruction method that considers Taylor dispersion was previously developed to extract the velocity profile, considering the diffusion effects of the tracer molecules within the carrier gas. This reconstruction method successfully extracted the correct velocity profile in the continuum flow regime. However, the method still faces challenges in the slip-flow regime. Since there is currently no consensus in the literature regarding the kinetic diameter value of acetone vapor, the diffusion coefficient estimation is uncertain especially at low pressures. This is why, in this study, we propose an original optical method to measure the diffusion coefficient of acetone vapor. This is achieved by linking the temporal evolution of the spatial photoluminescence distribution of acetone vapor to the diffusion coefficient via the Chapman-Enskog theory. Our research provides measurements of these parameters for a wide range of pressures (0.5–10 kPa) at ambient temperature.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02754-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning-aided tailoring of double-emulsions within double-T microchannel","authors":"Saeed Ghasemzade Bariki, Salman Movahedirad, Mohadeseh Babaei layaei","doi":"10.1007/s10404-024-02758-4","DOIUrl":"10.1007/s10404-024-02758-4","url":null,"abstract":"<div><p>The formation of double-emulsions or core/shell microdroplets in microchannels, essential for various chemical applications, traditionally relies on costly and time-consuming laboratory methods. In this regard, computational fluid dynamics (CFD) and artificial neural network (ANN) techniques were employed. The present study developed ANN models to predict the relationship between shell thickness and double-emulsion size in a double-T microchannel, using two datasets comprising 180 experimental and CFD data points. Assessing this relationship involved analyzing various input factors, including the Capillary, Weber (case A), and Reynolds numbers (case B) of the core, shell, and continuous phases. Among twelve training algorithms and four activation functions, the Levenberg–Marquardt (LM) algorithm with sigmoidal activation functions (Tansig and Logsig), in contrast to the linear activation functions (Poslin and Purelin), achieved the highest predictive accuracy. Additionally, the predictive accuracy of ANN models was found to be significantly improved when trained using a combination of capillary and Weber numbers, as opposed to models trained only using capillary, Weber, and Reynolds numbers. The optimal neural network architectures were [10 5] neurons for case A (tansig and logsig) and [8] neurons for case B (tansig), yielding coefficients of determination (R<sup>2</sup>) of 0.99 and 0.98, respectively. These models demonstrated high precision and effective generalization, evidenced by statistical measures such as R<sup>2</sup>, MSE, RMSE, AAD, %AARD, and computational time. Moreover, their ability to generalize within the training dataset further substantiates their predictive capacity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pressure drop and bubble velocity in Taylor flow through square microchannel","authors":"Ryo Kurimoto, Kosuke Hayashi, Akio Tomiyama","doi":"10.1007/s10404-024-02750-y","DOIUrl":"10.1007/s10404-024-02750-y","url":null,"abstract":"<div><p>Interface tracking simulations of gas–liquid Taylor flow in horizontal square microchannels were carried out to understand the relation between the pressure drop in the bubble part and the curvatures at the nose and tail of a bubble. Numerical conditions ranged for 0.00159 ≤ <i>Ca</i><sub><i>T</i></sub> ≤ 0.0989, 0.0817 ≤ <i>We</i><sub><i>T</i></sub> ≤ 25.4, and 8.33 ≤ <i>Re</i><sub><i>T</i></sub> ≤ 791, where <i>Ca</i><sub><i>T</i></sub>, <i>We</i><sub><i>T</i></sub>, and <i>Re</i><sub><i>T</i></sub> are the capillary, Weber, and Reynolds numbers based on the total volumetric flux. The dimensionless pressure drop in the bubble part increased with increasing the capillary number and the Weber number. The curvature at the nose of a bubble increased and that at the tail of a bubble decreased as the capillary number increased. The variation of the curvature at the tail of a bubble was more remarkable than that at the nose of a bubble due to the increase in the Weber number, which was the main cause of large pressure drop in the bubble part at the same capillary number. The relation between the bubble velocity and the total volumetric flux was also discussed. The distribution parameter of the drift-flux model without inertial effects showed a simple relation with the capillary number. A correlation of the distribution parameter, which is expressed in terms of the capillary number and the Weber number, was developed and was confirmed to give good predictions of the bubble velocity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02750-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diffusion coefficient measurement with fluorescent detection in free-diffusion based microfluidics","authors":"Lilia Bató, Péter Fürjes","doi":"10.1007/s10404-024-02752-w","DOIUrl":"10.1007/s10404-024-02752-w","url":null,"abstract":"<div><p>Microfluidic devices have been widely used to measure the diffusion coefficients and hydrodynamic radii of various molecules, especially proteins. The existing devices that use diffusion-based gradient generation apply obstacles such as membranes or hydrogels to avoid additional fluid flow affecting the evolution of concentration distribution and precise measurement. Here, a free-diffusion based microfluidic device was developed which is capable of measuring the diffusion coefficients of various, different-sized proteins and dyes without using any obstacles by minimizing pressure differences due to its symmetrical geometry. The fluorescent detection and the ease of application of the device enable accelerated measurements and interpretation of results. Time-lapse pictures of 30 s were taken of the diffusion profiles and a custom-made self-written Python program was used to fit the profiles to the theoretical functions and calculate the diffusion coefficients. Diffusion coefficients of bovine serum albumin, immunoglobulin G and rhodamine B were determined with this method and compared to their theoretical and experimental values.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of experimental and simulation methods for determining accommodation coefficients, particularly TMAC, at fluid-surface interfaces","authors":"Sadegh Yousefi-Nasab, Jaber Safdari, Javad Karimi-Sabet","doi":"10.1007/s10404-024-02747-7","DOIUrl":"10.1007/s10404-024-02747-7","url":null,"abstract":"<div><p>Accommodation Coefficients (ACs) are used in slip models to determine some important parameters for flowing dilute gases on solid surfaces such as: Cercignani–Lampis–Lord (CLL) model, drag coefficient, slip velocity, shear stress, and temperature jump. These coefficients in slip, transitional, and free molecular flow regimes take values other than unity. As a result, determining these coefficients for different gases and surfaces is crucial, especially where the continuum assumption with no-slip conditions at the surface is inaccurate. These coefficients can be extracted using experimental and simulation methods with different techniques. This paper provides a review of studies that have been conducted to determine the ACs, with a particular focus on the tangential momentum accommodation coefficient (TMAC), using both experimental and simulation methods. The research mainly pertains to microfluidics and nanofluidics. The reviewed studies have concluded that there is no clear relationship between the molecular weight of a gas and it’s TMAC. Also, the values of ACs depend on various factors.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamara Jennifer Crisóstomo-Rodríguez, Vania Denis Alonso-Santacruz, Luis Alfonso Villa-Vargas, Marco Antonio Ramírez-Salinas, Miguel Ángel Alemán-Arce, Verónica Iraís Solís-Tinoco
{"title":"Low-cost microfabrication methodology for microfluidic chips using 3D printer and replica molding techniques for biosensors","authors":"Tamara Jennifer Crisóstomo-Rodríguez, Vania Denis Alonso-Santacruz, Luis Alfonso Villa-Vargas, Marco Antonio Ramírez-Salinas, Miguel Ángel Alemán-Arce, Verónica Iraís Solís-Tinoco","doi":"10.1007/s10404-024-02745-9","DOIUrl":"10.1007/s10404-024-02745-9","url":null,"abstract":"<div><p>Microfluidics is an area that allows the design and construction of microchips. The most common fabrication of these chips is expensive and difficult to access, requiring a specialized laboratory, with instruments that need to be monitored by experienced technicians and high-cost materials, then new techniques are sought to facilitate their production. Here, we present a fabrication methodology that combines the 3D printer resolution, and the polydimethylsiloxane flexibility to create hydrophobic and biocompatible microfluidics chips which are connected to a microfluidic control system. Transparent, and leak-free polydimethylsiloxane microchips were achieved with a width and a height of 250 µm. This strategy allows to produce at least, 20 chips using the same resin mold. The pressure at which the chip can work is from 2.4 kPa to 124 kPa. This work provides a low-cost alternative for academic and research groups to create their own microfluidic systems and use the microfluidic advantages in all types of applications including biosensor building, studies in medicine, biology, nanoscience, environmental technology, chemistry, etc., since it allows a controlled manipulation of one or more fluids in a certain area where a sensor can be placed, generate a reaction, among others.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Amin Zaker, Shima Ostovar, Vahid Bazargan, Mohammad Akrami, Marco Marengo, Zeinab Salehi
{"title":"Microfluidic synthesis of alginate co-polymeric microgels for enhanced protein delivery applications","authors":"Mohammad Amin Zaker, Shima Ostovar, Vahid Bazargan, Mohammad Akrami, Marco Marengo, Zeinab Salehi","doi":"10.1007/s10404-024-02744-w","DOIUrl":"10.1007/s10404-024-02744-w","url":null,"abstract":"<div><p>Alginate-based microcapsules are promising carriers for drugs and biomedical agents due to their biodegradability, biocompatible character, and easy availability. Through microfluidic technology, we've achieved highly uniform alginate microencapsulation, exhibiting remarkable monodispersity. Despite alginate's favorable attributes, such as biocompatibility, its limited stability and mechanical properties pose challenges for drug delivery applications. Our research addresses this limitation by introducing a cross-linked alginate/kappa-carrageenan (Alg/κ-Car) co-polymer, enabling the fabrication of microgels through microfluidic devices. Our study demonstrates significant enhancements in Alg microgel properties with the incorporation of κ-Car. Comparative analyses of Alg/κ-Car and Alg microgels revealed substantial improvements in morphology, gel network, and stability attributed to the κ-Car addition. Notably, loading BSA as a model protein showcased enhanced drug carrier capabilities of the microgel when κ-Car was present. The release half-life of BSA within 1.5 wt.% Alg microgel was approximately 1.5 h, which extended to about 3 h when substituting 0.5 wt.% of Alg with κ-Car. This shift signifies a more controlled BSA release.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan, Mahmood Alam
{"title":"Parametric study on the influence of varying angled inlet channels on mixing performance in simple T micromixers and vortex T micromixers across a wide range of Reynolds numbers","authors":"Kamran Rasheed, Mubashshir Ahmad Ansari, Shahnwaz Alam, Mohammad Nawaz Khan, Mahmood Alam","doi":"10.1007/s10404-024-02746-8","DOIUrl":"10.1007/s10404-024-02746-8","url":null,"abstract":"<div><p>Micromixers become the core elements of lab-on-chip (LOC) devices used for mixing fluid samples at a very small scale. For modest Reynolds numbers, the nature of fluid movement is laminar across the microchannel hence mixing is challenging. Numerous designs of micromixers for mixing enhancement inside microfluidic devices have been developed to solve this issue. The current investigation looks at the performance of two distinct versions of passive micromixers i.e. simple T micromixer (STMM) and vortex T micromixer (VTMM), employing different angular configurations (i.e. 30°, 60°, 90°, 120° and 150°) on their inlet channel to monitor the consistency of blending for the Reynolds number in a range of 10–150. Numerical investigations were done by performing simulations on these geometrical arrangements to evaluate the level of mixing, pressure gradient and cost of mixing. The outcome indicates the performance of mixing is dependent on the angular arrangement of inlet channels. For STMM, the layout with inlet channels at 120° performs most effectively, whereas, for VTMM, the configuration with inlets at 90° performs best.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrically actuated peristaltic transport of viscoelastic fluid: a theoretical analysis","authors":"Mahesh Kumar, Pranab Kumar Mondal","doi":"10.1007/s10404-024-02742-y","DOIUrl":"10.1007/s10404-024-02742-y","url":null,"abstract":"<div><p>In this article, we discuss the bioinspired peristaltic pumping mechanism of an elastic non-Newtonian fluid whose rheology is characterized by the Phan-Thien-Tanner model in a microfluidic configuration. We consider the effect of an electroosmotic body force originating from electrical double layer phenomena formed in the wall of the fluidic channel of finite length. The considered configuration is consistent with the natural contraction of the oesophagus wall that does not involve expansion beyond the stationary boundary. Employing lubrication theory and assuming the underlying flow to be in the creeping flow regime, we outline the transport equations pertaining to the chosen peristaltic set up. The transport equations are then solved using a well-established method consistent with perturbation technique. By depicting the pressure variation and wall shear stress graphically for a continuous wave train, we aptly discuss the time-averaged net throughput and flow developed at channel inlet of the chosen pathway and demonstrate the eventual consequences of these flow patterns for a window of viscoelastic and electrokinetic parameters. The outcomes obtained from this model establishes that the underlying flow owing to the peristaltic pumping mechanism strongly relies on the rheological parameter <span>(varepsilon W{e}^{2})</span>. These inferences are expected to be of extensive importance in designing peristalsis pump, mimicking features of the physiological system, for achieving unidirectional flow of complex fluids with improved efficiency, frequently used in biochemical/biomicrofluidic applications.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}