多孔壁管道的粘性流动:渐近MHD效应

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Mustafa Turkyilmazoglu, Abdulaziz Alotaibi
{"title":"多孔壁管道的粘性流动:渐近MHD效应","authors":"Mustafa Turkyilmazoglu,&nbsp;Abdulaziz Alotaibi","doi":"10.1007/s10404-025-02808-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the filtration problem of Newtonian, incompressible, and viscous two-dimensional fluid flow through a permeable-walled tube. The generated pressure-driven flow incorporates Darcy’s law at the circular pipe wall. We then apply a transverse magnetic field of uniform strength to control the fluid filtration. Subsequently, we analytically examine the potential impacts of the magnetic field on the magnetohydrodynamic behavior of the fluid particles and the axial pressure field using perturbation analysis. Our results delineate the characteristics of the Lorentz force on the flow and pressure field within the porous-walled pipe. Notably, the magnetically affected pressure changes sign at a specific downstream location within the pipe, while the axial velocity flattens with increasing Hartman number at the inlet. Although the inlet regime is under the well-recognized damping dominance of the magnetic field, the filtration process downstream is accelerated with the assist of it.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the viscous flow through a porous-walled pipe: asymptotic MHD effects\",\"authors\":\"Mustafa Turkyilmazoglu,&nbsp;Abdulaziz Alotaibi\",\"doi\":\"10.1007/s10404-025-02808-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the filtration problem of Newtonian, incompressible, and viscous two-dimensional fluid flow through a permeable-walled tube. The generated pressure-driven flow incorporates Darcy’s law at the circular pipe wall. We then apply a transverse magnetic field of uniform strength to control the fluid filtration. Subsequently, we analytically examine the potential impacts of the magnetic field on the magnetohydrodynamic behavior of the fluid particles and the axial pressure field using perturbation analysis. Our results delineate the characteristics of the Lorentz force on the flow and pressure field within the porous-walled pipe. Notably, the magnetically affected pressure changes sign at a specific downstream location within the pipe, while the axial velocity flattens with increasing Hartman number at the inlet. Although the inlet regime is under the well-recognized damping dominance of the magnetic field, the filtration process downstream is accelerated with the assist of it.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-025-02808-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02808-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了牛顿、不可压缩、粘性二维流体流过渗透壁管时的过滤问题。所产生的压力驱动流在圆形管壁处结合了达西定律。然后我们施加均匀强度的横向磁场来控制流体过滤。随后,我们利用微扰分析分析了磁场对流体颗粒磁流体动力学行为和轴向压力场的潜在影响。我们的结果描绘了洛伦兹力对多孔壁管道内流动和压力场的特征。值得注意的是,受磁影响的压力在管道下游的特定位置发生变化,而轴向速度随着进口哈特曼数的增加而趋于平缓。虽然入口区处于磁场的阻尼主导下,但在磁场的辅助下,下游的过滤过程会加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the viscous flow through a porous-walled pipe: asymptotic MHD effects

This study explores the filtration problem of Newtonian, incompressible, and viscous two-dimensional fluid flow through a permeable-walled tube. The generated pressure-driven flow incorporates Darcy’s law at the circular pipe wall. We then apply a transverse magnetic field of uniform strength to control the fluid filtration. Subsequently, we analytically examine the potential impacts of the magnetic field on the magnetohydrodynamic behavior of the fluid particles and the axial pressure field using perturbation analysis. Our results delineate the characteristics of the Lorentz force on the flow and pressure field within the porous-walled pipe. Notably, the magnetically affected pressure changes sign at a specific downstream location within the pipe, while the axial velocity flattens with increasing Hartman number at the inlet. Although the inlet regime is under the well-recognized damping dominance of the magnetic field, the filtration process downstream is accelerated with the assist of it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信