{"title":"Achieving continuous focusing of particles and blood cells via AC insulator-based dielectrophoresis","authors":"Kaixin Song, Fengjuan Xu, Wei Xiao, Zhibin Wang, Xiaolin Fang, Donglin Cao, Ying Chen","doi":"10.1007/s10404-025-02799-3","DOIUrl":null,"url":null,"abstract":"<div><p>Insulator-based dielectrophoresis (iDEP) technology manipulates particles by creating a non-uniform electric field using insulating microchannel structures. It offers advantages such as high operability and electrode-free fabrication. However, the fluid driving and construction of non-uniform electric fields based on iDEP currently mainly relied on direct current (DC), which can easily lead to water electrolysis and the generation of a large amount of Joule heat. In this study, we used two metal tubes as electrodes to apply the AC and inlet/outlet to provide stable liquid flow based on the syringe pump, ensuring stable flow and achieving the focusing of particles and blood cells. Through numerical simulation, a ratchet structure with semicircular tooth surfaces was selected. This structure provides a more uniform distribution of high-field strength regions and can withstand higher flow rates. Subsequently, experiments were conducted to determine the focusing characteristics of particles under different conditions within this chip. Cell focusing throughout improved by nearly 3 times of magnitude compared to that of similar iDEP focusing techniques. Finally, the visualization experiment realized the defined morphology focusing of blood cells, and the optimal focusing ratio reached 7.27, and the focusing characteristics of blood cells were studied. This study is expected to promote the application of dielectrophoresis technology in clinical, biological and other aspects.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02799-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Insulator-based dielectrophoresis (iDEP) technology manipulates particles by creating a non-uniform electric field using insulating microchannel structures. It offers advantages such as high operability and electrode-free fabrication. However, the fluid driving and construction of non-uniform electric fields based on iDEP currently mainly relied on direct current (DC), which can easily lead to water electrolysis and the generation of a large amount of Joule heat. In this study, we used two metal tubes as electrodes to apply the AC and inlet/outlet to provide stable liquid flow based on the syringe pump, ensuring stable flow and achieving the focusing of particles and blood cells. Through numerical simulation, a ratchet structure with semicircular tooth surfaces was selected. This structure provides a more uniform distribution of high-field strength regions and can withstand higher flow rates. Subsequently, experiments were conducted to determine the focusing characteristics of particles under different conditions within this chip. Cell focusing throughout improved by nearly 3 times of magnitude compared to that of similar iDEP focusing techniques. Finally, the visualization experiment realized the defined morphology focusing of blood cells, and the optimal focusing ratio reached 7.27, and the focusing characteristics of blood cells were studied. This study is expected to promote the application of dielectrophoresis technology in clinical, biological and other aspects.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).