{"title":"On the viscous flow through a porous-walled pipe: asymptotic MHD effects","authors":"Mustafa Turkyilmazoglu, Abdulaziz Alotaibi","doi":"10.1007/s10404-025-02808-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the filtration problem of Newtonian, incompressible, and viscous two-dimensional fluid flow through a permeable-walled tube. The generated pressure-driven flow incorporates Darcy’s law at the circular pipe wall. We then apply a transverse magnetic field of uniform strength to control the fluid filtration. Subsequently, we analytically examine the potential impacts of the magnetic field on the magnetohydrodynamic behavior of the fluid particles and the axial pressure field using perturbation analysis. Our results delineate the characteristics of the Lorentz force on the flow and pressure field within the porous-walled pipe. Notably, the magnetically affected pressure changes sign at a specific downstream location within the pipe, while the axial velocity flattens with increasing Hartman number at the inlet. Although the inlet regime is under the well-recognized damping dominance of the magnetic field, the filtration process downstream is accelerated with the assist of it.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02808-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the filtration problem of Newtonian, incompressible, and viscous two-dimensional fluid flow through a permeable-walled tube. The generated pressure-driven flow incorporates Darcy’s law at the circular pipe wall. We then apply a transverse magnetic field of uniform strength to control the fluid filtration. Subsequently, we analytically examine the potential impacts of the magnetic field on the magnetohydrodynamic behavior of the fluid particles and the axial pressure field using perturbation analysis. Our results delineate the characteristics of the Lorentz force on the flow and pressure field within the porous-walled pipe. Notably, the magnetically affected pressure changes sign at a specific downstream location within the pipe, while the axial velocity flattens with increasing Hartman number at the inlet. Although the inlet regime is under the well-recognized damping dominance of the magnetic field, the filtration process downstream is accelerated with the assist of it.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).