Maryamsadat Ghoreishi, Efsun Senturk, Gianluca Cidonio, Chiara Scognamiglio, Zita Salajková, Mara Riminucci, Alessandro Corsi, Giancarlo Ruocco, Marco Leonetti, Riccardo Reale
{"title":"模型,模拟,和实验表征颗粒沉降在一个水平注射器","authors":"Maryamsadat Ghoreishi, Efsun Senturk, Gianluca Cidonio, Chiara Scognamiglio, Zita Salajková, Mara Riminucci, Alessandro Corsi, Giancarlo Ruocco, Marco Leonetti, Riccardo Reale","doi":"10.1007/s10404-025-02802-x","DOIUrl":null,"url":null,"abstract":"<div><p>Sedimentation is the settling of solid particles in a liquid medium driven by gravity. This phenomenon poses significant challenges in experimental lab-on-chip (LOC) applications, as they often involve a biological sample to be loaded inside a syringe for prolonged periods (e.g. 3D bioprinting, microfluidic cytometers). Mitigating solutions such as mechanical agitators or buffer adjustments exist, but increase the complexity and cost of the setup. In this work, we developed a model of particle sedimentation inside a horizontal syringe, which highlights the importance of several parameters: syringe radius, particle terminal velocity in the buffer, syringe outlet position, and flow-rate. The model provides a simple way to estimate the concentration half-life (<span>\\({t}_{1/2}\\)</span>), i.e. the time required for the concentration to halve, which is useful during the experiment design process. The model was initially tested numerically and then validated experimentally. Additionally, the applicability of the model to predict sedimentation of biological particles was experimentally demonstrated. Lastly, the model was used to develop guidelines for the design of setups with minimized sedimentation.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-025-02802-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling, simulation, and experimental characterization of particle sedimentation inside a horizontal syringe\",\"authors\":\"Maryamsadat Ghoreishi, Efsun Senturk, Gianluca Cidonio, Chiara Scognamiglio, Zita Salajková, Mara Riminucci, Alessandro Corsi, Giancarlo Ruocco, Marco Leonetti, Riccardo Reale\",\"doi\":\"10.1007/s10404-025-02802-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sedimentation is the settling of solid particles in a liquid medium driven by gravity. This phenomenon poses significant challenges in experimental lab-on-chip (LOC) applications, as they often involve a biological sample to be loaded inside a syringe for prolonged periods (e.g. 3D bioprinting, microfluidic cytometers). Mitigating solutions such as mechanical agitators or buffer adjustments exist, but increase the complexity and cost of the setup. In this work, we developed a model of particle sedimentation inside a horizontal syringe, which highlights the importance of several parameters: syringe radius, particle terminal velocity in the buffer, syringe outlet position, and flow-rate. The model provides a simple way to estimate the concentration half-life (<span>\\\\({t}_{1/2}\\\\)</span>), i.e. the time required for the concentration to halve, which is useful during the experiment design process. The model was initially tested numerically and then validated experimentally. Additionally, the applicability of the model to predict sedimentation of biological particles was experimentally demonstrated. Lastly, the model was used to develop guidelines for the design of setups with minimized sedimentation.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10404-025-02802-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-025-02802-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02802-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Modelling, simulation, and experimental characterization of particle sedimentation inside a horizontal syringe
Sedimentation is the settling of solid particles in a liquid medium driven by gravity. This phenomenon poses significant challenges in experimental lab-on-chip (LOC) applications, as they often involve a biological sample to be loaded inside a syringe for prolonged periods (e.g. 3D bioprinting, microfluidic cytometers). Mitigating solutions such as mechanical agitators or buffer adjustments exist, but increase the complexity and cost of the setup. In this work, we developed a model of particle sedimentation inside a horizontal syringe, which highlights the importance of several parameters: syringe radius, particle terminal velocity in the buffer, syringe outlet position, and flow-rate. The model provides a simple way to estimate the concentration half-life (\({t}_{1/2}\)), i.e. the time required for the concentration to halve, which is useful during the experiment design process. The model was initially tested numerically and then validated experimentally. Additionally, the applicability of the model to predict sedimentation of biological particles was experimentally demonstrated. Lastly, the model was used to develop guidelines for the design of setups with minimized sedimentation.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).