用于电化学检测和微生物生物膜监测的微流体装置的可持续和优化制造

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Anmol Kulshrestha, Pratima Gupta, Sanjay S. Negi
{"title":"用于电化学检测和微生物生物膜监测的微流体装置的可持续和优化制造","authors":"Anmol Kulshrestha,&nbsp;Pratima Gupta,&nbsp;Sanjay S. Negi","doi":"10.1007/s10404-025-02804-9","DOIUrl":null,"url":null,"abstract":"<div><p>In healthcare and industry, infections caused by biofilms and unwanted buildup in the environment are big problems, making it important to have affordable and easy-to-use monitoring tools. The study aims to create an affordable and eco-friendly electrochemical microfluidic device that can easily check biofilm growth without needing invasive methods, making it simpler and cheaper than traditional biosensors. The fabrication of the microfluidic device involved a resource-efficient approach, utilizing 3-D printed molds made from acrylonitrile butadiene styrene material, followed by polydimethylsiloxane casting to form the channels. Screen-printed electrodes (SPEs) were integrated into the device, and acetone washing was used for channel formation. The device performed testing with one bacterial strain (<i>Staphylococcus aureus</i>), one fungal strain (<i>Candida albicans</i>), and two real samples (clinical blood and wastewater) employing impedance methods. Additionally, the study simulated real-world conditions by utilizing clinical and wastewater samples to monitor biofilm growth. Biofilm development in the microfluidic device exhibited a sigmoidal growth pattern, with impedance increases of ~ 74.4% for <i>S. aureus</i>, 73.78% for <i>C. albicans</i>, and 82.7% and 87.34% for clinical and wastewater samples, respectively. High-resolution SEM imaging confirmed the presence of biofilms on the surface of the SPEs. The dynamic range of the device was found to be 1291.57–1811.25 ohms, with a limit of detection of 0.208 CFU/mL and a sensitivity of 10.83 µA/CFU/mL. The device's sustainable fabrication process and reliable performance make it a practical option for researchers with limited resources, offering a valuable alternative to traditional biofilm study methods.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable and optimized fabrication of microfluidic devices for electrochemical detection and monitoring of microbial biofilms\",\"authors\":\"Anmol Kulshrestha,&nbsp;Pratima Gupta,&nbsp;Sanjay S. Negi\",\"doi\":\"10.1007/s10404-025-02804-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In healthcare and industry, infections caused by biofilms and unwanted buildup in the environment are big problems, making it important to have affordable and easy-to-use monitoring tools. The study aims to create an affordable and eco-friendly electrochemical microfluidic device that can easily check biofilm growth without needing invasive methods, making it simpler and cheaper than traditional biosensors. The fabrication of the microfluidic device involved a resource-efficient approach, utilizing 3-D printed molds made from acrylonitrile butadiene styrene material, followed by polydimethylsiloxane casting to form the channels. Screen-printed electrodes (SPEs) were integrated into the device, and acetone washing was used for channel formation. The device performed testing with one bacterial strain (<i>Staphylococcus aureus</i>), one fungal strain (<i>Candida albicans</i>), and two real samples (clinical blood and wastewater) employing impedance methods. Additionally, the study simulated real-world conditions by utilizing clinical and wastewater samples to monitor biofilm growth. Biofilm development in the microfluidic device exhibited a sigmoidal growth pattern, with impedance increases of ~ 74.4% for <i>S. aureus</i>, 73.78% for <i>C. albicans</i>, and 82.7% and 87.34% for clinical and wastewater samples, respectively. High-resolution SEM imaging confirmed the presence of biofilms on the surface of the SPEs. The dynamic range of the device was found to be 1291.57–1811.25 ohms, with a limit of detection of 0.208 CFU/mL and a sensitivity of 10.83 µA/CFU/mL. The device's sustainable fabrication process and reliable performance make it a practical option for researchers with limited resources, offering a valuable alternative to traditional biofilm study methods.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-025-02804-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02804-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在医疗保健和工业领域,由生物膜引起的感染和环境中不必要的积聚是大问题,因此拥有负担得起且易于使用的监测工具非常重要。该研究旨在创造一种经济实惠且环保的电化学微流控装置,可以轻松检查生物膜的生长,而无需侵入性方法,使其比传统的生物传感器更简单,更便宜。微流控装置的制造采用了一种资源高效的方法,利用由丙烯腈-丁二烯-苯乙烯材料制成的3d打印模具,然后用聚二甲基硅氧烷铸造形成通道。将丝网印刷电极(spe)集成到该装置中,并使用丙酮洗涤形成通道。该设备采用阻抗法对一种细菌菌株(金黄色葡萄球菌)、一种真菌菌株(白色念珠菌)和两种真实样本(临床血液和废水)进行检测。此外,该研究通过利用临床和废水样本来监测生物膜的生长,模拟了现实世界的条件。微流控装置中生物膜发育呈s型生长模式,金黄色葡萄球菌、白色念珠菌的阻抗分别增加74.4%、73.78%、临床和废水样品的阻抗分别增加82.7%和87.34%。高分辨率扫描电镜成像证实了spe表面存在生物膜。该器件的动态范围为1291.57 ~ 1811.25欧姆,检测限为0.208 CFU/mL,灵敏度为10.83µa /CFU/mL。该设备的可持续制造工艺和可靠的性能使其成为资源有限的研究人员的实用选择,为传统生物膜研究方法提供了有价值的替代方案。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable and optimized fabrication of microfluidic devices for electrochemical detection and monitoring of microbial biofilms

In healthcare and industry, infections caused by biofilms and unwanted buildup in the environment are big problems, making it important to have affordable and easy-to-use monitoring tools. The study aims to create an affordable and eco-friendly electrochemical microfluidic device that can easily check biofilm growth without needing invasive methods, making it simpler and cheaper than traditional biosensors. The fabrication of the microfluidic device involved a resource-efficient approach, utilizing 3-D printed molds made from acrylonitrile butadiene styrene material, followed by polydimethylsiloxane casting to form the channels. Screen-printed electrodes (SPEs) were integrated into the device, and acetone washing was used for channel formation. The device performed testing with one bacterial strain (Staphylococcus aureus), one fungal strain (Candida albicans), and two real samples (clinical blood and wastewater) employing impedance methods. Additionally, the study simulated real-world conditions by utilizing clinical and wastewater samples to monitor biofilm growth. Biofilm development in the microfluidic device exhibited a sigmoidal growth pattern, with impedance increases of ~ 74.4% for S. aureus, 73.78% for C. albicans, and 82.7% and 87.34% for clinical and wastewater samples, respectively. High-resolution SEM imaging confirmed the presence of biofilms on the surface of the SPEs. The dynamic range of the device was found to be 1291.57–1811.25 ohms, with a limit of detection of 0.208 CFU/mL and a sensitivity of 10.83 µA/CFU/mL. The device's sustainable fabrication process and reliable performance make it a practical option for researchers with limited resources, offering a valuable alternative to traditional biofilm study methods.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信