Microfluidics and Nanofluidics最新文献

筛选
英文 中文
Investigation of bubble formation dynamics of gas-non-Newtonian liquid two-phase flow in a flow-focusing generator 流聚焦发生器中气体-非牛顿液体两相流的气泡形成动力学研究
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-08-16 DOI: 10.1007/s10404-024-02757-5
Gang Yang, Hui-Chen Zhang
{"title":"Investigation of bubble formation dynamics of gas-non-Newtonian liquid two-phase flow in a flow-focusing generator","authors":"Gang Yang,&nbsp;Hui-Chen Zhang","doi":"10.1007/s10404-024-02757-5","DOIUrl":"10.1007/s10404-024-02757-5","url":null,"abstract":"<div><p>In the present study, we explore the dynamics of bubble formation in a flow-focusing device designed for gas-non-Newtonian liquid two-phase flow. The flow-focusing device with a cross-section of a square (300 μm × 300 μm) is constructed on polydimethylsiloxane using lithographic techniques and subsequently sealed with polymethylmethacrylate. A high-speed camera is employed to document the process of bubble formation during the experiment, complemented by computational fluid dynamics methods for an in-depth analysis. The gas is nitrogen, and the liquid is sodium carboxymethyl cellulose solutions with mass fractions of 0.1, 0.2, and 0.3%, respectively. The inlet flow rates of gas and liquid are set at 1–2 ml/min in the simulation and the experiment, and the observed flow patterns are all slug flows. Experimental findings suggest that the duration of bubble formation can be bifurcated into two distinct parts. The first part is predominantly influenced by the velocity of the inlet gas, and the correlation coefficient between velocity and time is −0.56, while the second part is impacted by the shear-thinning properties of the liquid, which are correlated with the flow index and viscosity coefficient of the non-Newtonian liquids, and the correlation coefficients are −0.47 and 0.48, respectively. The computational fluid dynamics results of gas-non-Newtonian liquid two-phase flow with gas and liquid flow rates of 2 ml/min corroborate that the manifestation of the aforementioned time segmentation phenomenon primarily depends on the vortex intensity at the bubble’s head and the orientation of pressure gradients. When the bubble neck size approaches 0, the viscosity of the surrounding liquid decreases rapidly, and alterations in the velocity field near the bubble neck trigger fluctuations in the viscosity of the non-Newtonian liquid, thereby influencing the bubble formation process.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurements of diffusion coefficient and kinetic diameter of acetone vapor via molecular tagging 通过分子标记测量丙酮蒸气的扩散系数和动力学直径
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-08-09 DOI: 10.1007/s10404-024-02754-8
Zongwei Zhang, Dominique Fratantonio, Christine Barrot Lattes, Marcos Rojas-Cardenas, Stéphane Colin
{"title":"Measurements of diffusion coefficient and kinetic diameter of acetone vapor via molecular tagging","authors":"Zongwei Zhang,&nbsp;Dominique Fratantonio,&nbsp;Christine Barrot Lattes,&nbsp;Marcos Rojas-Cardenas,&nbsp;Stéphane Colin","doi":"10.1007/s10404-024-02754-8","DOIUrl":"10.1007/s10404-024-02754-8","url":null,"abstract":"<div><p>The Molecular Tagging (MT) technique is a promising methodology for locally measuring velocity and temperature fields in rarefied gas flows. Recently, Molecular Tagging Velocimetry (MTV) has been successfully applied to gas flows in mini-channels in the continuum regime at high pressure and early slip-flow regime at lower pressure. As the operating pressure decreases, diffusion effects become more pronounced, and in MTV, they hinder the extraction of the correct velocity profile by simply dividing the displacement profile of the tagged molecular line by time of flight. To address this issue, a reconstruction method that considers Taylor dispersion was previously developed to extract the velocity profile, considering the diffusion effects of the tracer molecules within the carrier gas. This reconstruction method successfully extracted the correct velocity profile in the continuum flow regime. However, the method still faces challenges in the slip-flow regime. Since there is currently no consensus in the literature regarding the kinetic diameter value of acetone vapor, the diffusion coefficient estimation is uncertain especially at low pressures. This is why, in this study, we propose an original optical method to measure the diffusion coefficient of acetone vapor. This is achieved by linking the temporal evolution of the spatial photoluminescence distribution of acetone vapor to the diffusion coefficient via the Chapman-Enskog theory. Our research provides measurements of these parameters for a wide range of pressures (0.5–10 kPa) at ambient temperature.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02754-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-aided tailoring of double-emulsions within double-T microchannel 机器学习辅助在双 T 型微通道内定制双乳液
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-08-07 DOI: 10.1007/s10404-024-02758-4
Saeed Ghasemzade Bariki, Salman Movahedirad, Mohadeseh Babaei layaei
{"title":"Machine learning-aided tailoring of double-emulsions within double-T microchannel","authors":"Saeed Ghasemzade Bariki,&nbsp;Salman Movahedirad,&nbsp;Mohadeseh Babaei layaei","doi":"10.1007/s10404-024-02758-4","DOIUrl":"10.1007/s10404-024-02758-4","url":null,"abstract":"<div><p>The formation of double-emulsions or core/shell microdroplets in microchannels, essential for various chemical applications, traditionally relies on costly and time-consuming laboratory methods. In this regard, computational fluid dynamics (CFD) and artificial neural network (ANN) techniques were employed. The present study developed ANN models to predict the relationship between shell thickness and double-emulsion size in a double-T microchannel, using two datasets comprising 180 experimental and CFD data points. Assessing this relationship involved analyzing various input factors, including the Capillary, Weber (case A), and Reynolds numbers (case B) of the core, shell, and continuous phases. Among twelve training algorithms and four activation functions, the Levenberg–Marquardt (LM) algorithm with sigmoidal activation functions (Tansig and Logsig), in contrast to the linear activation functions (Poslin and Purelin), achieved the highest predictive accuracy. Additionally, the predictive accuracy of ANN models was found to be significantly improved when trained using a combination of capillary and Weber numbers, as opposed to models trained only using capillary, Weber, and Reynolds numbers. The optimal neural network architectures were [10 5] neurons for case A (tansig and logsig) and [8] neurons for case B (tansig), yielding coefficients of determination (R<sup>2</sup>) of 0.99 and 0.98, respectively. These models demonstrated high precision and effective generalization, evidenced by statistical measures such as R<sup>2</sup>, MSE, RMSE, AAD, %AARD, and computational time. Moreover, their ability to generalize within the training dataset further substantiates their predictive capacity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic thermal and hydrodynamic effects in 3D-printed heat sinks with intricate microchannel patterns 具有复杂微通道图案的 3D 打印散热器中的热效应和流体力学效应的协同作用
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-08-05 DOI: 10.1007/s10404-024-02751-x
Win-Jet Luo, Pramod Vishwakarma, Bivas Panigrahi
{"title":"Synergistic thermal and hydrodynamic effects in 3D-printed heat sinks with intricate microchannel patterns","authors":"Win-Jet Luo,&nbsp;Pramod Vishwakarma,&nbsp;Bivas Panigrahi","doi":"10.1007/s10404-024-02751-x","DOIUrl":"10.1007/s10404-024-02751-x","url":null,"abstract":"<div><p>A compelling solution to the issue of high heat flux generated by flexible electronic devices has been found in liquid-based microfluidic cooling devices. It has been earlier realized that the varying microchannel hydrodynamics influences the overall heat transfer in these devices. However, microfluidic cooling devices that incorporate intricate microchannels have not been explored to their full potential. In this study, we investigate the use of 3-D intricate microchannel geometries in microfluidic heat sinks, their generated hydrodynamics, and their profound impact on the overall heat transfer process. Utilizing 3D-printed scaffold removal technology, three distinct microfluidic devices were fabricated, each distinguishable by its cross-sectional shape of the microchannel designs (coil, square, and triangle). These microfluidic devices, based on Polydimethylsiloxane-Graphene oxide (PDMS-GO) as substrate material, have been examined experimentally and numerically for their heat dissipation capacities under constant temperature heat source of 358 K at flow rates ranging from 40 to 400 μL/min. Experimental observation illustrates that the coil-microchannel configuration exhibited superior heat dissipation capabilities, outperforming both the square and triangle microchannels across all flow settings. Furthermore, numerical simulations corroborated this experimental finding by providing insights into through-plane temperature distribution, heat transfer coefficient, pressure drop, and channel hydrodynamics. Our study intends to advance the understanding of microchannel cooling, as well as emphasizes the importance of geometrical configuration towards optimal electronic hotspot cooling.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 9","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis 模板辅助制造用于蛋白质突破分析的月形通道
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-07-31 DOI: 10.1007/s10404-024-02755-7
Raghu K. Moorthy, Serena D’Souza, P. Sunthar, Santosh B. Noronha
{"title":"Template-assisted fabrication of moon-shaped channels for protein breakthrough analysis","authors":"Raghu K. Moorthy,&nbsp;Serena D’Souza,&nbsp;P. Sunthar,&nbsp;Santosh B. Noronha","doi":"10.1007/s10404-024-02755-7","DOIUrl":"10.1007/s10404-024-02755-7","url":null,"abstract":"<div><p>Cylindrical column with packed stationary phase is the workhorse of liquid chromatography systems. These stationary phases are commonly classified on the basis of different form factors namely, beads and monoliths for protein chromatography. Monolithic rods are one of the important geometries derived from polymers through complex polymerization schemes with additional requirements such as cross-linkers and specific reaction conditions. To address these practical difficulties and enable ease of fabrication at laboratory scale, acrylic copolymers are hypothesized to perform as a monolithic stationary phase suitable for protein chromatography. The present work proposes a rapid fabrication technique to obtain monolithic rods that could be reconditioned without any of the above additional steps. It is characterized with monolith diameter that could be controlled using acrylic copolymer concentration. Formation of the copolymeric stationary phase inside microchannel led to annular geometry and in turn, demonstrated fabrication of moon-shaped channels (MSCs) for the first time in literature. An online monitoring system facilitated tracer breakthrough analysis with MSCs to report sharp peak front and an estimate of channel void volume. Breakthrough curves with single protein validated the selection of blue dextran as tracer and indicated retention of proteins due to electrostatic interactions on the functional copolymer surface.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules 用于灵敏、连续检测痕量分子的膜过滤器集成微流控装置中的 SERS 活性核心卫星纳米结构
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-07-30 DOI: 10.1007/s10404-024-02756-6
Li-An Wu, Kai-Ting Hsieh, Chien-Shen Lin, Yuh-Lin Wang, Yih-Fan Chen
{"title":"SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules","authors":"Li-An Wu,&nbsp;Kai-Ting Hsieh,&nbsp;Chien-Shen Lin,&nbsp;Yuh-Lin Wang,&nbsp;Yih-Fan Chen","doi":"10.1007/s10404-024-02756-6","DOIUrl":"10.1007/s10404-024-02756-6","url":null,"abstract":"<div><p>We developed a surface-enhanced Raman scattering (SERS)-active plasmonic core-satellite nanostructure and incorporated it into a membrane filter-integrated microfluidic device for continuous monitoring of molecules in solution. The core-satellite nanostructures were fabricated by immobilizing a high number density of gold nanoparticles (AuNPs) on silica beads.to create many nanogaps among the AuNPs. The sizes of the nanogaps were fine-tuned by adding a silver (Ag) shell to optimize the SERS activity. In addition, citrate molecule, the capping agent of the nanoparticles, was displaced by alkali halides. The displacement not only reduced the SERS signals of citrate but also enhanced the adsorption of target molecules. The alkali halide-treated core-satellite nanostructures were accumulated onto a membrane filter integrated into a microfluidic device, serving as a uniform and sensitive SERS substrate. By increasing the volume of the sample solution flowing through the membrane filter, we increased the number of molecules adsorbed to the nanostructures, amplifying the intensities of their characteristic Raman peaks. Our microfluidic SERS device demonstrated continuous SERS detection of malachite green at a concentration as low as 500 fM. In summary, while various core-satellite nanostructures and microfluidic SERS devices have been reported, the integration of the membrane filter-containing microfluidic device with the core-satellite nanostructures facilitated sensitive and continuous molecule detection in our study.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02756-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure drop and bubble velocity in Taylor flow through square microchannel 泰勒流经方形微通道时的压降和气泡速度
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-07-30 DOI: 10.1007/s10404-024-02750-y
Ryo Kurimoto, Kosuke Hayashi, Akio Tomiyama
{"title":"Pressure drop and bubble velocity in Taylor flow through square microchannel","authors":"Ryo Kurimoto,&nbsp;Kosuke Hayashi,&nbsp;Akio Tomiyama","doi":"10.1007/s10404-024-02750-y","DOIUrl":"10.1007/s10404-024-02750-y","url":null,"abstract":"<div><p>Interface tracking simulations of gas–liquid Taylor flow in horizontal square microchannels were carried out to understand the relation between the pressure drop in the bubble part and the curvatures at the nose and tail of a bubble. Numerical conditions ranged for 0.00159 ≤ <i>Ca</i><sub><i>T</i></sub> ≤ 0.0989, 0.0817 ≤ <i>We</i><sub><i>T</i></sub> ≤ 25.4, and 8.33 ≤ <i>Re</i><sub><i>T</i></sub> ≤ 791, where <i>Ca</i><sub><i>T</i></sub>, <i>We</i><sub><i>T</i></sub>, and <i>Re</i><sub><i>T</i></sub> are the capillary, Weber, and Reynolds numbers based on the total volumetric flux. The dimensionless pressure drop in the bubble part increased with increasing the capillary number and the Weber number. The curvature at the nose of a bubble increased and that at the tail of a bubble decreased as the capillary number increased. The variation of the curvature at the tail of a bubble was more remarkable than that at the nose of a bubble due to the increase in the Weber number, which was the main cause of large pressure drop in the bubble part at the same capillary number. The relation between the bubble velocity and the total volumetric flux was also discussed. The distribution parameter of the drift-flux model without inertial effects showed a simple relation with the capillary number. A correlation of the distribution parameter, which is expressed in terms of the capillary number and the Weber number, was developed and was confirmed to give good predictions of the bubble velocity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02750-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion coefficient measurement with fluorescent detection in free-diffusion based microfluidics 在基于自由扩散的微流控技术中利用荧光检测测量扩散系数
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-07-29 DOI: 10.1007/s10404-024-02752-w
Lilia Bató, Péter Fürjes
{"title":"Diffusion coefficient measurement with fluorescent detection in free-diffusion based microfluidics","authors":"Lilia Bató,&nbsp;Péter Fürjes","doi":"10.1007/s10404-024-02752-w","DOIUrl":"10.1007/s10404-024-02752-w","url":null,"abstract":"<div><p>Microfluidic devices have been widely used to measure the diffusion coefficients and hydrodynamic radii of various molecules, especially proteins. The existing devices that use diffusion-based gradient generation apply obstacles such as membranes or hydrogels to avoid additional fluid flow affecting the evolution of concentration distribution and precise measurement. Here, a free-diffusion based microfluidic device was developed which is capable of measuring the diffusion coefficients of various, different-sized proteins and dyes without using any obstacles by minimizing pressure differences due to its symmetrical geometry. The fluorescent detection and the ease of application of the device enable accelerated measurements and interpretation of results. Time-lapse pictures of 30 s were taken of the diffusion profiles and a custom-made self-written Python program was used to fit the profiles to the theoretical functions and calculate the diffusion coefficients. Diffusion coefficients of bovine serum albumin, immunoglobulin G and rhodamine B were determined with this method and compared to their theoretical and experimental values.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process optimization for preparation of curcumin and quercetin co-encapsulated liposomes using microfluidic device 利用微流体装置制备姜黄素和槲皮素共包囊脂质体的工艺优化
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-07-26 DOI: 10.1007/s10404-024-02753-9
Vandana Krishna, Harshita Chitturi, Venkata Vamsi Krishna Venuganti
{"title":"Process optimization for preparation of curcumin and quercetin co-encapsulated liposomes using microfluidic device","authors":"Vandana Krishna,&nbsp;Harshita Chitturi,&nbsp;Venkata Vamsi Krishna Venuganti","doi":"10.1007/s10404-024-02753-9","DOIUrl":"10.1007/s10404-024-02753-9","url":null,"abstract":"<div><p>The aim of this study was to prepare, characterize and evaluate liposomes co-encapsulated with curcumin and quercetin using a droplet-based microfluidic device. Curcumin and quercetin co-encapsulated liposomes made of phosphatidylcholine and cholesterol were synthesized using a droplet-based microfluidic device with different flow rate ratios of 9:1, 6:1, 3:1 and 1:1 of the aqueous to organic phase at 100 to 160 µl/min flow rate. The dynamic light scattering technique showed that 9:1 and 6:1 flow rate ratios at 140 and 160 µl/min flow rates, respectively provide desired particle size range of 200–250 nm and 0.17–0.23 polydispersity index. The greatest encapsulation and loading efficiency achieved for curcumin and quercetin was 68 ± 9.2%, 14 ± 1.8%, and 36 ± 2.7%, 7.2 ± 0.5%, respectively with 6:1 flow rate ratio. Cell uptake studies performed on human oral carcinoma cells, FaDu using confocal laser scanning microscopy showed that the liposomes were taken up within 2 h. Clathrin and caveolin-mediated pathways contribute to the cell uptake of liposomes. The FaDu cell viability was reduced to 49 ± 2.2, 69 ± 1.5 and 47 ± 3.5% after incubation with liposomes containing curcumin (80 µM), quercetin (86 µM) and combination (32 µM of curcumin and 26 µM of quercetin), respectively. Apoptosis assay showed that the combination liposomes inhibit FaDu cell growth through apoptosis induced cell death. In conclusion, co-encapsulated liposomes can be prepared by microfluidics-based method and curcumin and quercetin combination liposomes are effective against oral carcinoma.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of experimental and simulation methods for determining accommodation coefficients, particularly TMAC, at fluid-surface interfaces 确定流体-表面界面上的容纳系数,特别是 TMAC 的实验和模拟方法综述
IF 2.3 4区 工程技术
Microfluidics and Nanofluidics Pub Date : 2024-07-20 DOI: 10.1007/s10404-024-02747-7
Sadegh Yousefi-Nasab, Jaber Safdari, Javad Karimi-Sabet
{"title":"A review of experimental and simulation methods for determining accommodation coefficients, particularly TMAC, at fluid-surface interfaces","authors":"Sadegh Yousefi-Nasab,&nbsp;Jaber Safdari,&nbsp;Javad Karimi-Sabet","doi":"10.1007/s10404-024-02747-7","DOIUrl":"10.1007/s10404-024-02747-7","url":null,"abstract":"<div><p>Accommodation Coefficients (ACs) are used in slip models to determine some important parameters for flowing dilute gases on solid surfaces such as: Cercignani–Lampis–Lord (CLL) model, drag coefficient, slip velocity, shear stress, and temperature jump. These coefficients in slip, transitional, and free molecular flow regimes take values other than unity. As a result, determining these coefficients for different gases and surfaces is crucial, especially where the continuum assumption with no-slip conditions at the surface is inaccurate. These coefficients can be extracted using experimental and simulation methods with different techniques. This paper provides a review of studies that have been conducted to determine the ACs, with a particular focus on the tangential momentum accommodation coefficient (TMAC), using both experimental and simulation methods. The research mainly pertains to microfluidics and nanofluidics. The reviewed studies have concluded that there is no clear relationship between the molecular weight of a gas and it’s TMAC. Also, the values of ACs depend on various factors.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信